使用时间序列模型预测病人监护仪中的阈值警报

Jonas Chromik, Bjarne Pfitzner, Nina Ihde, Marius Michaelis, D. Schmidt, S. Klopfenstein, A. Poncette, F. Balzer, B. Arnrich
{"title":"使用时间序列模型预测病人监护仪中的阈值警报","authors":"Jonas Chromik, Bjarne Pfitzner, Nina Ihde, Marius Michaelis, D. Schmidt, S. Klopfenstein, A. Poncette, F. Balzer, B. Arnrich","doi":"10.5220/0010767300003123","DOIUrl":null,"url":null,"abstract":": Too many alarms are a persistent problem in today’s intensive care medicine leading to alarm desensitisation and alarm fatigue. This puts patients and staff at risk. We propose a forecasting strategy for threshold alarms in patient monitors in order to replace alarms that are actionable right now with scheduled tasks in an attempt to remove the urgency from the situation. Therefore, we employ both statistical and machine learning models for time series forecasting and apply these models to vital parameter data such as blood pressure, heart rate, and oxygen saturation. The results are promising, although impaired by low and non-constant sampling frequencies of the time series data in use. The combination of a GRU model with medium-resampled data shows the best performance for most types of alarms. However, higher time resolution and constant sampling frequencies are needed in order to meaningfully evaluate our approach.","PeriodicalId":20676,"journal":{"name":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Thresholds Alarms in Medical Patient Monitors using Time Series Models\",\"authors\":\"Jonas Chromik, Bjarne Pfitzner, Nina Ihde, Marius Michaelis, D. Schmidt, S. Klopfenstein, A. Poncette, F. Balzer, B. Arnrich\",\"doi\":\"10.5220/0010767300003123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Too many alarms are a persistent problem in today’s intensive care medicine leading to alarm desensitisation and alarm fatigue. This puts patients and staff at risk. We propose a forecasting strategy for threshold alarms in patient monitors in order to replace alarms that are actionable right now with scheduled tasks in an attempt to remove the urgency from the situation. Therefore, we employ both statistical and machine learning models for time series forecasting and apply these models to vital parameter data such as blood pressure, heart rate, and oxygen saturation. The results are promising, although impaired by low and non-constant sampling frequencies of the time series data in use. The combination of a GRU model with medium-resampled data shows the best performance for most types of alarms. However, higher time resolution and constant sampling frequencies are needed in order to meaningfully evaluate our approach.\",\"PeriodicalId\":20676,\"journal\":{\"name\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010767300003123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010767300003123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当今的重症监护医学中,过多的警报是一个持续存在的问题,导致警报脱敏和警报疲劳。这使患者和工作人员处于危险之中。我们提出了一种患者监护仪阈值警报的预测策略,以便用计划任务取代现在可操作的警报,以试图从情况中消除紧迫性。因此,我们采用统计和机器学习模型进行时间序列预测,并将这些模型应用于血压、心率和血氧饱和度等重要参数数据。结果是有希望的,尽管受到使用的时间序列数据的低和非恒定采样频率的影响。GRU模型与中等重采样数据的组合对大多数类型的警报显示出最佳性能。然而,为了有意义地评估我们的方法,需要更高的时间分辨率和恒定的采样频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Thresholds Alarms in Medical Patient Monitors using Time Series Models
: Too many alarms are a persistent problem in today’s intensive care medicine leading to alarm desensitisation and alarm fatigue. This puts patients and staff at risk. We propose a forecasting strategy for threshold alarms in patient monitors in order to replace alarms that are actionable right now with scheduled tasks in an attempt to remove the urgency from the situation. Therefore, we employ both statistical and machine learning models for time series forecasting and apply these models to vital parameter data such as blood pressure, heart rate, and oxygen saturation. The results are promising, although impaired by low and non-constant sampling frequencies of the time series data in use. The combination of a GRU model with medium-resampled data shows the best performance for most types of alarms. However, higher time resolution and constant sampling frequencies are needed in order to meaningfully evaluate our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信