M. Korent, M. Soderznik, Urška Ročnik, S. Drev, K. Rožman, S. Šturm, S. Kobe, K. Ž. Soderžnik
{"title":"热变形Nd-Fe-B磁体低能火花等离子烧结研究","authors":"M. Korent, M. Soderznik, Urška Ročnik, S. Drev, K. Rožman, S. Šturm, S. Kobe, K. Ž. Soderžnik","doi":"10.11648/J.IJMSA.20211005.12","DOIUrl":null,"url":null,"abstract":"High-coercivity Nd-Fe-B permanent magnets are key materials for producing electrical components on the macro- and nanoscale. We present a newly developed, economically efficient method for processing Nd-Fe-B magnets based on spark-plasma sintering (SPS) that makes it possible to retain the technologically essential properties of the magnet, but by consuming about 30% less energy compared to the conventional SPS process. A magnet with an anisotropic microstructure was fabricated from MQU-F commercial ribbons with a low energy consumption (0.37 MJ) during the deformation process and compared to a conventionally prepared hot-deformed magnet that consumed three-times more energy (1.2 MJ). Both magnets were post-annealed at 650°C for 120 min in a vacuum. After the post-annealing process, the low-energy processing (LEP) hot-deformed magnet exhibited a coercivity of 1327 kAm-1, and a remanent magnetization of 1.27 T. In comparison, the high-energy processing (HEP) hot-deformed magnet had a coercivity of 1337 kAm-1 and a remanent magnetization of 1.31 T. A complete microstructural characterization and detailed statistical analyses revealed a better texture orientation for the HEP hot-deformed magnet processed with the larger energy consumption. This texture is the main reason for the difference in the remanent magnetization between the two hot-deformed magnets. The results show that although the LEP hot-deformed magnet was processed with three-times less energy than in a typical hot-deformation process, the maximum energy product is only 8% lower than that of a HEP hot-deformed magnet.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Low-Energy Spark-Plasma Sintering of Hot-Deformed Nd-Fe-B Magnets\",\"authors\":\"M. Korent, M. Soderznik, Urška Ročnik, S. Drev, K. Rožman, S. Šturm, S. Kobe, K. Ž. Soderžnik\",\"doi\":\"10.11648/J.IJMSA.20211005.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-coercivity Nd-Fe-B permanent magnets are key materials for producing electrical components on the macro- and nanoscale. We present a newly developed, economically efficient method for processing Nd-Fe-B magnets based on spark-plasma sintering (SPS) that makes it possible to retain the technologically essential properties of the magnet, but by consuming about 30% less energy compared to the conventional SPS process. A magnet with an anisotropic microstructure was fabricated from MQU-F commercial ribbons with a low energy consumption (0.37 MJ) during the deformation process and compared to a conventionally prepared hot-deformed magnet that consumed three-times more energy (1.2 MJ). Both magnets were post-annealed at 650°C for 120 min in a vacuum. After the post-annealing process, the low-energy processing (LEP) hot-deformed magnet exhibited a coercivity of 1327 kAm-1, and a remanent magnetization of 1.27 T. In comparison, the high-energy processing (HEP) hot-deformed magnet had a coercivity of 1337 kAm-1 and a remanent magnetization of 1.31 T. A complete microstructural characterization and detailed statistical analyses revealed a better texture orientation for the HEP hot-deformed magnet processed with the larger energy consumption. This texture is the main reason for the difference in the remanent magnetization between the two hot-deformed magnets. The results show that although the LEP hot-deformed magnet was processed with three-times less energy than in a typical hot-deformation process, the maximum energy product is only 8% lower than that of a HEP hot-deformed magnet.\",\"PeriodicalId\":14116,\"journal\":{\"name\":\"International Journal of Materials Science and Applications\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJMSA.20211005.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20211005.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward Low-Energy Spark-Plasma Sintering of Hot-Deformed Nd-Fe-B Magnets
High-coercivity Nd-Fe-B permanent magnets are key materials for producing electrical components on the macro- and nanoscale. We present a newly developed, economically efficient method for processing Nd-Fe-B magnets based on spark-plasma sintering (SPS) that makes it possible to retain the technologically essential properties of the magnet, but by consuming about 30% less energy compared to the conventional SPS process. A magnet with an anisotropic microstructure was fabricated from MQU-F commercial ribbons with a low energy consumption (0.37 MJ) during the deformation process and compared to a conventionally prepared hot-deformed magnet that consumed three-times more energy (1.2 MJ). Both magnets were post-annealed at 650°C for 120 min in a vacuum. After the post-annealing process, the low-energy processing (LEP) hot-deformed magnet exhibited a coercivity of 1327 kAm-1, and a remanent magnetization of 1.27 T. In comparison, the high-energy processing (HEP) hot-deformed magnet had a coercivity of 1337 kAm-1 and a remanent magnetization of 1.31 T. A complete microstructural characterization and detailed statistical analyses revealed a better texture orientation for the HEP hot-deformed magnet processed with the larger energy consumption. This texture is the main reason for the difference in the remanent magnetization between the two hot-deformed magnets. The results show that although the LEP hot-deformed magnet was processed with three-times less energy than in a typical hot-deformation process, the maximum energy product is only 8% lower than that of a HEP hot-deformed magnet.