一类直积图的超连通性

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
F. Soliemany, M. Ghasemi, R. Varmazyar
{"title":"一类直积图的超连通性","authors":"F. Soliemany, M. Ghasemi, R. Varmazyar","doi":"10.1080/23799927.2021.1974567","DOIUrl":null,"url":null,"abstract":"Let and be two graphs. The Kronecker product has vertex set and the edge set In this paper we show that if is a complete multipartite graph, where the parameters satisfying certain conditions and is a path of length n−1, then is not super i-connected, where and . Also we show that is not super connected, where is a cycle of length n and .","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Super connectivity of a family of direct product graphs\",\"authors\":\"F. Soliemany, M. Ghasemi, R. Varmazyar\",\"doi\":\"10.1080/23799927.2021.1974567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let and be two graphs. The Kronecker product has vertex set and the edge set In this paper we show that if is a complete multipartite graph, where the parameters satisfying certain conditions and is a path of length n−1, then is not super i-connected, where and . Also we show that is not super connected, where is a cycle of length n and .\",\"PeriodicalId\":37216,\"journal\":{\"name\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23799927.2021.1974567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2021.1974567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

设和是两个图。Kronecker积有顶点集和边集。本文证明了它是一个完全多部图,其中参数满足一定条件且是一条长度为n - 1的路径,那么它不是超i连通的,其中与。我们也证明了它不是超连通的,它是一个长度为n和的循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super connectivity of a family of direct product graphs
Let and be two graphs. The Kronecker product has vertex set and the edge set In this paper we show that if is a complete multipartite graph, where the parameters satisfying certain conditions and is a path of length n−1, then is not super i-connected, where and . Also we show that is not super connected, where is a cycle of length n and .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信