具有属性(T)作用于圆的群

Bruno Duchesne
{"title":"具有属性(T)作用于圆的群","authors":"Bruno Duchesne","doi":"10.1093/imrn/rnac136","DOIUrl":null,"url":null,"abstract":"We exhibit a topological group G with property (T) acting non-elementarily and continuously on the circle. This group is an uncountable totally disconnected closed subgroup of Homeo + (S 1). It has a large unitary dual since it separates points. It comes from homeomorphisms of dendrites and a kaleidoscopic construction. Alternatively, it can be seen as the group of elements preserving some specific geodesic lamination of the hyperbolic disk. We also prove that this action is unique up to conjugation and that it can't be smoothened in any way. Finally, we determine the universal minimal flow of the group G.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A group with Property (T) acting on the circle\",\"authors\":\"Bruno Duchesne\",\"doi\":\"10.1093/imrn/rnac136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit a topological group G with property (T) acting non-elementarily and continuously on the circle. This group is an uncountable totally disconnected closed subgroup of Homeo + (S 1). It has a large unitary dual since it separates points. It comes from homeomorphisms of dendrites and a kaleidoscopic construction. Alternatively, it can be seen as the group of elements preserving some specific geodesic lamination of the hyperbolic disk. We also prove that this action is unique up to conjugation and that it can't be smoothened in any way. Finally, we determine the universal minimal flow of the group G.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnac136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imrn/rnac136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们展示了一个具有性质(T)的非初等连续作用于圆上的拓扑群G。这个群是homo + (s1)的一个不可数的完全不连通的闭子群,它有一个大的酉对偶,因为它是分开点的。它来自树突的同胚性和万花筒结构。或者,它可以被看作是一组保留双曲盘某些特定测地线层合的元素。我们还证明了这种作用在共轭之前是唯一的,并且不能以任何方式平滑。最后,我们确定了群G的普遍最小流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A group with Property (T) acting on the circle
We exhibit a topological group G with property (T) acting non-elementarily and continuously on the circle. This group is an uncountable totally disconnected closed subgroup of Homeo + (S 1). It has a large unitary dual since it separates points. It comes from homeomorphisms of dendrites and a kaleidoscopic construction. Alternatively, it can be seen as the group of elements preserving some specific geodesic lamination of the hyperbolic disk. We also prove that this action is unique up to conjugation and that it can't be smoothened in any way. Finally, we determine the universal minimal flow of the group G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信