Valentina Popescu, M. Nassar, Xin Wang, E. Tumer, T. Webb
{"title":"Flexpoint:深度学习的预测数字","authors":"Valentina Popescu, M. Nassar, Xin Wang, E. Tumer, T. Webb","doi":"10.1109/ARITH.2018.8464801","DOIUrl":null,"url":null,"abstract":"Deep learning has been undergoing rapid growth in recent years thanks to its state-of-the-art performance across a wide range of real-world applications. Traditionally neural networks were trained in IEEE-754 binary64 or binary32 format, a common practice in general scientific computing. However, the unique computational requirements of deep neural network training workloads allow for much more efficient and inexpensive alternatives, unleashing a new wave of numerical innovations powering specialized computing hardware. We previously presented Flexpoint, a blocked fixed-point data type combined with a novel predictive exponent management algorithm designed to support training of deep networks without modifications, aiming at a seamless replacement of the binary32 widely in practice today. We showed that Flexpoint with 16-bit mantissa and 5-bit shared exponent (flex16+S) achieved numerical parity to binary32 in training a number of convolutional neural networks. In the current paper we review the continuing trend of predictive numerics enhancing deep neural network training in specialized computing devices such as the Intel®N ervana ™ Neural Network Processor.","PeriodicalId":6576,"journal":{"name":"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)","volume":"118 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Flexpoint: Predictive Numerics for Deep Learning\",\"authors\":\"Valentina Popescu, M. Nassar, Xin Wang, E. Tumer, T. Webb\",\"doi\":\"10.1109/ARITH.2018.8464801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has been undergoing rapid growth in recent years thanks to its state-of-the-art performance across a wide range of real-world applications. Traditionally neural networks were trained in IEEE-754 binary64 or binary32 format, a common practice in general scientific computing. However, the unique computational requirements of deep neural network training workloads allow for much more efficient and inexpensive alternatives, unleashing a new wave of numerical innovations powering specialized computing hardware. We previously presented Flexpoint, a blocked fixed-point data type combined with a novel predictive exponent management algorithm designed to support training of deep networks without modifications, aiming at a seamless replacement of the binary32 widely in practice today. We showed that Flexpoint with 16-bit mantissa and 5-bit shared exponent (flex16+S) achieved numerical parity to binary32 in training a number of convolutional neural networks. In the current paper we review the continuing trend of predictive numerics enhancing deep neural network training in specialized computing devices such as the Intel®N ervana ™ Neural Network Processor.\",\"PeriodicalId\":6576,\"journal\":{\"name\":\"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"118 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2018.8464801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2018.8464801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep learning has been undergoing rapid growth in recent years thanks to its state-of-the-art performance across a wide range of real-world applications. Traditionally neural networks were trained in IEEE-754 binary64 or binary32 format, a common practice in general scientific computing. However, the unique computational requirements of deep neural network training workloads allow for much more efficient and inexpensive alternatives, unleashing a new wave of numerical innovations powering specialized computing hardware. We previously presented Flexpoint, a blocked fixed-point data type combined with a novel predictive exponent management algorithm designed to support training of deep networks without modifications, aiming at a seamless replacement of the binary32 widely in practice today. We showed that Flexpoint with 16-bit mantissa and 5-bit shared exponent (flex16+S) achieved numerical parity to binary32 in training a number of convolutional neural networks. In the current paper we review the continuing trend of predictive numerics enhancing deep neural network training in specialized computing devices such as the Intel®N ervana ™ Neural Network Processor.