P. P. Carvalho, J. Límaco, Denilson Menezes, Yuri Thamsten
{"title":"一类非牛顿不可压缩粘性流体的局部零可控性","authors":"P. P. Carvalho, J. Límaco, Denilson Menezes, Yuri Thamsten","doi":"10.3934/eect.2021043","DOIUrl":null,"url":null,"abstract":"We investigate the null controllability property of systems that mathematically describe the dynamics of some non-Newtonian incompressible viscous flows. The principal model we study was proposed by O. A. Ladyzhenskaya, although the techniques we develop here apply to other fluids having a shear-dependent viscosity. Taking advantage of the Pontryagin Minimum Principle, we utilize a bootstrapping argument to prove that sufficiently smooth controls to the forced linearized Stokes problem exist, as long as the initial data in turn has enough regularity. From there, we extend the result to the nonlinear problem. As a byproduct, we devise a quasi-Newton algorithm to compute the states and a control, which we prove to converge in an appropriate sense. We finish the work with some numerical experiments.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Local null controllability of a class of non-Newtonian incompressible viscous fluids\",\"authors\":\"P. P. Carvalho, J. Límaco, Denilson Menezes, Yuri Thamsten\",\"doi\":\"10.3934/eect.2021043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the null controllability property of systems that mathematically describe the dynamics of some non-Newtonian incompressible viscous flows. The principal model we study was proposed by O. A. Ladyzhenskaya, although the techniques we develop here apply to other fluids having a shear-dependent viscosity. Taking advantage of the Pontryagin Minimum Principle, we utilize a bootstrapping argument to prove that sufficiently smooth controls to the forced linearized Stokes problem exist, as long as the initial data in turn has enough regularity. From there, we extend the result to the nonlinear problem. As a byproduct, we devise a quasi-Newton algorithm to compute the states and a control, which we prove to converge in an appropriate sense. We finish the work with some numerical experiments.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2021043\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2021043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
我们研究了数学上描述一些非牛顿不可压缩粘性流动动力学的系统的零可控性。我们研究的主要模型是由O. a . Ladyzhenskaya提出的,尽管我们在这里开发的技术适用于具有剪切依赖粘度的其他流体。利用庞特里亚金最小原理,我们利用自启动论证来证明对强制线性化Stokes问题存在足够光滑的控制,只要初始数据反过来具有足够的规律性。由此,我们将结果推广到非线性问题。作为副产品,我们设计了一个准牛顿算法来计算状态和控制,我们证明了它在适当的意义上是收敛的。我们用一些数值实验来完成这项工作。
Local null controllability of a class of non-Newtonian incompressible viscous fluids
We investigate the null controllability property of systems that mathematically describe the dynamics of some non-Newtonian incompressible viscous flows. The principal model we study was proposed by O. A. Ladyzhenskaya, although the techniques we develop here apply to other fluids having a shear-dependent viscosity. Taking advantage of the Pontryagin Minimum Principle, we utilize a bootstrapping argument to prove that sufficiently smooth controls to the forced linearized Stokes problem exist, as long as the initial data in turn has enough regularity. From there, we extend the result to the nonlinear problem. As a byproduct, we devise a quasi-Newton algorithm to compute the states and a control, which we prove to converge in an appropriate sense. We finish the work with some numerical experiments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.