检验条件不对称:基于残差的方法

S. Laurent, P. Lambert, David Veredas
{"title":"检验条件不对称:基于残差的方法","authors":"S. Laurent, P. Lambert, David Veredas","doi":"10.2139/ssrn.1029645","DOIUrl":null,"url":null,"abstract":"We propose three residual-based tests for conditional asymmetry. The distribution is assumed to fall into the class of skewed distributions of Fernandez and Steel (1998). In this class, asymmetry is measured by the ratio between the probabilities of being larger and smaller than the mode. Estimation is performed under the null hypothesis of constant asymmetry of the innovations and, in a second step, tests for conditional asymmetry are performed on generalized residuals through parametric and nonparametric methods. We derive the asymptotic distribution of the tests that incorporates the uncertainty of the estimated parameters in the first step. A Monte Carlo study shows that neglecting this uncertainty severely biases the tests and an empirical application on a basket of daily returns reveals that financial data often present dynamics in the conditional skewness.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2007-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing Conditional Asymmetry: A Residual-Based Approach\",\"authors\":\"S. Laurent, P. Lambert, David Veredas\",\"doi\":\"10.2139/ssrn.1029645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose three residual-based tests for conditional asymmetry. The distribution is assumed to fall into the class of skewed distributions of Fernandez and Steel (1998). In this class, asymmetry is measured by the ratio between the probabilities of being larger and smaller than the mode. Estimation is performed under the null hypothesis of constant asymmetry of the innovations and, in a second step, tests for conditional asymmetry are performed on generalized residuals through parametric and nonparametric methods. We derive the asymptotic distribution of the tests that incorporates the uncertainty of the estimated parameters in the first step. A Monte Carlo study shows that neglecting this uncertainty severely biases the tests and an empirical application on a basket of daily returns reveals that financial data often present dynamics in the conditional skewness.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1029645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1029645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了三个基于残差的条件不对称检验。假设该分布属于Fernandez和Steel(1998)的偏态分布。在本课程中,不对称性是通过大于和小于模态的概率之比来测量的。在创新的不变不对称的零假设下进行估计,在第二步中,通过参数和非参数方法对广义残差进行条件不对称检验。在第一步中,我们导出了包含估计参数不确定性的检验的渐近分布。蒙特卡罗研究表明,忽视这种不确定性会严重影响测试,对一篮子日收益的实证应用表明,金融数据通常在条件偏度中呈现动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing Conditional Asymmetry: A Residual-Based Approach
We propose three residual-based tests for conditional asymmetry. The distribution is assumed to fall into the class of skewed distributions of Fernandez and Steel (1998). In this class, asymmetry is measured by the ratio between the probabilities of being larger and smaller than the mode. Estimation is performed under the null hypothesis of constant asymmetry of the innovations and, in a second step, tests for conditional asymmetry are performed on generalized residuals through parametric and nonparametric methods. We derive the asymptotic distribution of the tests that incorporates the uncertainty of the estimated parameters in the first step. A Monte Carlo study shows that neglecting this uncertainty severely biases the tests and an empirical application on a basket of daily returns reveals that financial data often present dynamics in the conditional skewness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信