假设平均自由程恒定,在重慢化剂中由脉冲源产生的中子能谱的计算

M.V. Kazarnovskii
{"title":"假设平均自由程恒定,在重慢化剂中由脉冲源产生的中子能谱的计算","authors":"M.V. Kazarnovskii","doi":"10.1016/0891-3919(59)90185-X","DOIUrl":null,"url":null,"abstract":"<div><p>The energy distribution of neutrons from a pulsed source in a moderator of mass number <em>M</em> ⪢ 1 is shown, on the assumption of a constant mean free path <em>l</em>, to be <span><span><span><math><mtext>n(z) = </mtext><mtext>const.</mtext><mtext> × </mtext><mtext>exp</mtext><mtext> {</mtext><mtext>1</mtext><mtext>2</mtext><mtext>(M + 1)ƒ</mtext><msub><mi></mi><mn>−1</mn></msub><mtext>(z) + ƒ</mtext><msub><mi></mi><mn>0</mn></msub><mtext>(z) + 2(M + 1)</mtext><msup><mi></mi><mn>−1</mn></msup><mtext>ƒ</mtext><msub><mi></mi><mn>1</mn></msub><mtext>(z) + …}</mtext></math></span></span></span> at energies small in comparison with the source energy. <em>z</em> = 1(<em>M</em> +1)/<em>vt</em>, with <em>v</em> the neutron velocity and <em>t</em> the slowing-down time. <span><math><mtext>ƒ;</mtext><msub><mi></mi><mn>−1</mn></msub><mtext>(z), ƒ</mtext><msub><mi></mi><mn>0</mn></msub><mtext>(z) </mtext><mtext>and</mtext><mtext> ƒ</mtext><msub><mi></mi><mn>1</mn></msub><mtext>(z)</mtext></math></span> are given in integral form, together with analytical expressions valid near the maximum, and asymptotic expansions; detailed tables of the functions are also provided. It is demonstrated by numerical calculation that a knowledge of these three functions is sufficient to allow the neutron spectrum to be determined even in deuterium. The situation in a moderator composed of a number of different types of nuclei is considered. In this case the problem is solved by developing a method for solving integral and integrodifferential equations whose kernel <em>K</em>(<em>x</em>, <em>y</em>) is significantly different from zero only where |<em>x</em> − <em>y</em>|/|<em>x</em> + <em>y</em>| is very small.</p></div>","PeriodicalId":100812,"journal":{"name":"Journal of Nuclear Energy (1954)","volume":"9 1","pages":"Pages 293-303"},"PeriodicalIF":0.0000,"publicationDate":"1959-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0891-3919(59)90185-X","citationCount":"3","resultStr":"{\"title\":\"A calculation of the neutron energy spectrum produced by a pulsed source in a heavy moderator, assuming a constant mean free path\",\"authors\":\"M.V. Kazarnovskii\",\"doi\":\"10.1016/0891-3919(59)90185-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The energy distribution of neutrons from a pulsed source in a moderator of mass number <em>M</em> ⪢ 1 is shown, on the assumption of a constant mean free path <em>l</em>, to be <span><span><span><math><mtext>n(z) = </mtext><mtext>const.</mtext><mtext> × </mtext><mtext>exp</mtext><mtext> {</mtext><mtext>1</mtext><mtext>2</mtext><mtext>(M + 1)ƒ</mtext><msub><mi></mi><mn>−1</mn></msub><mtext>(z) + ƒ</mtext><msub><mi></mi><mn>0</mn></msub><mtext>(z) + 2(M + 1)</mtext><msup><mi></mi><mn>−1</mn></msup><mtext>ƒ</mtext><msub><mi></mi><mn>1</mn></msub><mtext>(z) + …}</mtext></math></span></span></span> at energies small in comparison with the source energy. <em>z</em> = 1(<em>M</em> +1)/<em>vt</em>, with <em>v</em> the neutron velocity and <em>t</em> the slowing-down time. <span><math><mtext>ƒ;</mtext><msub><mi></mi><mn>−1</mn></msub><mtext>(z), ƒ</mtext><msub><mi></mi><mn>0</mn></msub><mtext>(z) </mtext><mtext>and</mtext><mtext> ƒ</mtext><msub><mi></mi><mn>1</mn></msub><mtext>(z)</mtext></math></span> are given in integral form, together with analytical expressions valid near the maximum, and asymptotic expansions; detailed tables of the functions are also provided. It is demonstrated by numerical calculation that a knowledge of these three functions is sufficient to allow the neutron spectrum to be determined even in deuterium. The situation in a moderator composed of a number of different types of nuclei is considered. In this case the problem is solved by developing a method for solving integral and integrodifferential equations whose kernel <em>K</em>(<em>x</em>, <em>y</em>) is significantly different from zero only where |<em>x</em> − <em>y</em>|/|<em>x</em> + <em>y</em>| is very small.</p></div>\",\"PeriodicalId\":100812,\"journal\":{\"name\":\"Journal of Nuclear Energy (1954)\",\"volume\":\"9 1\",\"pages\":\"Pages 293-303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1959-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0891-3919(59)90185-X\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Energy (1954)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/089139195990185X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy (1954)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/089139195990185X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在质量数为M⪢1的慢化剂中脉冲源中子的能量分布,在平均自由程l恒定的假设下,显示为n(z) = const。x exp {12(M + 1) f−1(z) + ƒ0(z) + 2(M + 1)−1ƒ1(z) +…}与源能量相比能量小。z = 1(M +1)/vt,其中v为中子速度,t为减速时间。给出了f;−1(z), ƒ0(z)和ƒ1(z)的积分形式,并给出了在最大值附近有效的解析表达式和渐近展开式;还提供了函数的详细表。数值计算表明,即使在氘中,知道这三个函数也足以确定中子谱。考虑了由许多不同类型的核组成的慢化剂的情况。在这种情况下,通过开发一种求解积分和积分微分方程的方法来解决问题,这些方程的核K(x, y)只有在|x−y|/|x + y|非常小的情况下才显著不同于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A calculation of the neutron energy spectrum produced by a pulsed source in a heavy moderator, assuming a constant mean free path

The energy distribution of neutrons from a pulsed source in a moderator of mass number M ⪢ 1 is shown, on the assumption of a constant mean free path l, to be n(z) = const. × exp {12(M + 1)ƒ−1(z) + ƒ0(z) + 2(M + 1)−1ƒ1(z) + …} at energies small in comparison with the source energy. z = 1(M +1)/vt, with v the neutron velocity and t the slowing-down time. ƒ;−1(z), ƒ0(z) and ƒ1(z) are given in integral form, together with analytical expressions valid near the maximum, and asymptotic expansions; detailed tables of the functions are also provided. It is demonstrated by numerical calculation that a knowledge of these three functions is sufficient to allow the neutron spectrum to be determined even in deuterium. The situation in a moderator composed of a number of different types of nuclei is considered. In this case the problem is solved by developing a method for solving integral and integrodifferential equations whose kernel K(x, y) is significantly different from zero only where |xy|/|x + y| is very small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信