标准混合固化模型单调似然的贝叶斯解

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
F. M. Almeida, V. D. Mayrink, E. Colosimo
{"title":"标准混合固化模型单调似然的贝叶斯解","authors":"F. M. Almeida, V. D. Mayrink, E. Colosimo","doi":"10.1111/stan.12289","DOIUrl":null,"url":null,"abstract":"An advantage of the standard mixture cure model over an usual survival model is how it accounts for the population heterogeneity. It allows a joint estimation for the distribution related to the susceptible and non‐susceptible subjects. The estimation algorithm may provide ±∞$$ \\pm \\infty $$ coefficients when the likelihood cannot be maximized. This phenomenon is known as Monotone Likelihood (ML), common in survival and logistic regressions. The ML tends to appear in situations with small sample size, many censored times, many binary or unbalanced covariates. Particularly, it occurs when all uncensored cases correspond to one level of a binary covariate. The existing frequentist solution is an adaptation of the Firth correction, originally proposed to reduce bias of maximum likelihood estimates. It prevents ±∞$$ \\pm \\infty $$ estimates by penalizing the likelihood, with the penalty interpreted as the Bayesian Jeffreys prior. In this paper, the penalized likelihood of the standard mixture cure model is considered with different penalties (Bayesian priors). A Monte Carlo simulation study indicates good inference results, especially for balanced data sets. Finally, a real application involving a melanoma data illustrates the approach.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian solution to the monotone likelihood in the standard mixture cure model\",\"authors\":\"F. M. Almeida, V. D. Mayrink, E. Colosimo\",\"doi\":\"10.1111/stan.12289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An advantage of the standard mixture cure model over an usual survival model is how it accounts for the population heterogeneity. It allows a joint estimation for the distribution related to the susceptible and non‐susceptible subjects. The estimation algorithm may provide ±∞$$ \\\\pm \\\\infty $$ coefficients when the likelihood cannot be maximized. This phenomenon is known as Monotone Likelihood (ML), common in survival and logistic regressions. The ML tends to appear in situations with small sample size, many censored times, many binary or unbalanced covariates. Particularly, it occurs when all uncensored cases correspond to one level of a binary covariate. The existing frequentist solution is an adaptation of the Firth correction, originally proposed to reduce bias of maximum likelihood estimates. It prevents ±∞$$ \\\\pm \\\\infty $$ estimates by penalizing the likelihood, with the penalty interpreted as the Bayesian Jeffreys prior. In this paper, the penalized likelihood of the standard mixture cure model is considered with different penalties (Bayesian priors). A Monte Carlo simulation study indicates good inference results, especially for balanced data sets. Finally, a real application involving a melanoma data illustrates the approach.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12289\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12289","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

标准混合治愈模型比通常的生存模型的一个优点是它如何解释群体异质性。它允许对与易感和非易感受试者相关的分布进行联合估计。当似然不能最大化时,估计算法可以提供±∞$$ \pm \infty $$系数。这种现象被称为单调似然(ML),在生存和逻辑回归中很常见。机器学习倾向于出现在小样本量,许多审查时间,许多二进制或不平衡协变量的情况下。特别是,当所有未审查的情况对应于二进制协变量的一个水平时,就会发生这种情况。现有的频率解是Firth修正的一种改编,最初提出的目的是减少最大似然估计的偏差。它通过惩罚似然来防止±∞$$ \pm \infty $$估计,惩罚被解释为贝叶斯杰弗里斯先验。本文考虑了不同惩罚(贝叶斯先验)下标准混合固化模型的惩罚似然。蒙特卡罗模拟研究表明了良好的推理效果,特别是对于平衡数据集。最后,一个涉及黑色素瘤的实际应用数据说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian solution to the monotone likelihood in the standard mixture cure model
An advantage of the standard mixture cure model over an usual survival model is how it accounts for the population heterogeneity. It allows a joint estimation for the distribution related to the susceptible and non‐susceptible subjects. The estimation algorithm may provide ±∞$$ \pm \infty $$ coefficients when the likelihood cannot be maximized. This phenomenon is known as Monotone Likelihood (ML), common in survival and logistic regressions. The ML tends to appear in situations with small sample size, many censored times, many binary or unbalanced covariates. Particularly, it occurs when all uncensored cases correspond to one level of a binary covariate. The existing frequentist solution is an adaptation of the Firth correction, originally proposed to reduce bias of maximum likelihood estimates. It prevents ±∞$$ \pm \infty $$ estimates by penalizing the likelihood, with the penalty interpreted as the Bayesian Jeffreys prior. In this paper, the penalized likelihood of the standard mixture cure model is considered with different penalties (Bayesian priors). A Monte Carlo simulation study indicates good inference results, especially for balanced data sets. Finally, a real application involving a melanoma data illustrates the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信