原创设计的高压电源模块应用现场分级材料

T. Le, Z. Valdez-Nava, G. Bélijar, S. Diaham, L. Laudebat, L. Fetouhi, R. Khazaka
{"title":"原创设计的高压电源模块应用现场分级材料","authors":"T. Le, Z. Valdez-Nava, G. Bélijar, S. Diaham, L. Laudebat, L. Fetouhi, R. Khazaka","doi":"10.1109/ICD46958.2020.9341852","DOIUrl":null,"url":null,"abstract":"One of the main goals in aeronautic industry is to increase the total electrical power in on-board systems. The first approach is to increase the voltage while reducing the volume of converters. However, this approach induces very high electrical constraints on the insulating materials used for power module. These local high electric fields can cause premature failure, by partial discharge activity and insulation breakdown. In order to efficiently reduce the electrical stresses in high voltage power modules, the design of new stress-control encapsulating composite materials with graded properties has been developed using the particles electrophoresis auto assembling technique. It is a promising solution since it does not impact the volume of the power module and has a negligible impact on the overall mass. The aim of this paper is to evaluate different strategies to achieve such field grading encapsulating composite with local high relative permittivity ($\\varepsilon_{r} \\gt 10)$, tailored around critical areas where the electric field is high. The present paper mainly proposes two processes to enable the electrodeposition of a field grading layer within a composite encapsulation to cover multiple electrodes of a direct bonded copper (DBC) substrate with a complex layout. The first approach consists in adding a new and fixed electrode on the layout of DBC substrate that will not be polarized or used during normal operation of the module. The second method consists in adding a removable top electrode above the substrate. Results show that the latter approach is potentially the best choice to enable the electrodeposition of a homogenous thickness of field graded layer on a complex DBC layout with multiple adjacent copper tracks.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"134 1","pages":"313-316"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Original design of field grading materials for high voltage power module applications\",\"authors\":\"T. Le, Z. Valdez-Nava, G. Bélijar, S. Diaham, L. Laudebat, L. Fetouhi, R. Khazaka\",\"doi\":\"10.1109/ICD46958.2020.9341852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main goals in aeronautic industry is to increase the total electrical power in on-board systems. The first approach is to increase the voltage while reducing the volume of converters. However, this approach induces very high electrical constraints on the insulating materials used for power module. These local high electric fields can cause premature failure, by partial discharge activity and insulation breakdown. In order to efficiently reduce the electrical stresses in high voltage power modules, the design of new stress-control encapsulating composite materials with graded properties has been developed using the particles electrophoresis auto assembling technique. It is a promising solution since it does not impact the volume of the power module and has a negligible impact on the overall mass. The aim of this paper is to evaluate different strategies to achieve such field grading encapsulating composite with local high relative permittivity ($\\\\varepsilon_{r} \\\\gt 10)$, tailored around critical areas where the electric field is high. The present paper mainly proposes two processes to enable the electrodeposition of a field grading layer within a composite encapsulation to cover multiple electrodes of a direct bonded copper (DBC) substrate with a complex layout. The first approach consists in adding a new and fixed electrode on the layout of DBC substrate that will not be polarized or used during normal operation of the module. The second method consists in adding a removable top electrode above the substrate. Results show that the latter approach is potentially the best choice to enable the electrodeposition of a homogenous thickness of field graded layer on a complex DBC layout with multiple adjacent copper tracks.\",\"PeriodicalId\":6795,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Dielectrics (ICD)\",\"volume\":\"134 1\",\"pages\":\"313-316\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Dielectrics (ICD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICD46958.2020.9341852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICD46958.2020.9341852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

航空工业的主要目标之一是增加机载系统的总功率。第一种方法是在增加电压的同时减小变换器的体积。然而,这种方法对用于电源模块的绝缘材料产生非常高的电约束。这些局部的高电场会由于局部放电活动和绝缘击穿而导致过早失效。为了有效地降低高压电源模块中的电应力,采用颗粒电泳自动组装技术设计了具有梯度性能的新型应力控制封装复合材料。这是一个很有前途的解决方案,因为它不会影响电源模块的体积,对整体质量的影响可以忽略不计。本文的目的是评估不同的策略来实现这种具有局部高相对介电常数($\varepsilon_{r} \gt 10)$的场级封装复合材料,在电场高的关键区域进行定制。本文主要提出了两种工艺,以实现在复合封装内电沉积场级配层,以覆盖具有复杂布局的直接键合铜(DBC)衬底的多个电极。第一种方法是在DBC基板的布局上增加一个新的固定电极,该电极在模块正常工作期间不会被极化或使用。第二种方法包括在衬底上方添加可移动的顶部电极。结果表明,后一种方法可能是在具有多个相邻铜道的复杂DBC布局上电沉积均匀厚度的场梯度层的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Original design of field grading materials for high voltage power module applications
One of the main goals in aeronautic industry is to increase the total electrical power in on-board systems. The first approach is to increase the voltage while reducing the volume of converters. However, this approach induces very high electrical constraints on the insulating materials used for power module. These local high electric fields can cause premature failure, by partial discharge activity and insulation breakdown. In order to efficiently reduce the electrical stresses in high voltage power modules, the design of new stress-control encapsulating composite materials with graded properties has been developed using the particles electrophoresis auto assembling technique. It is a promising solution since it does not impact the volume of the power module and has a negligible impact on the overall mass. The aim of this paper is to evaluate different strategies to achieve such field grading encapsulating composite with local high relative permittivity ($\varepsilon_{r} \gt 10)$, tailored around critical areas where the electric field is high. The present paper mainly proposes two processes to enable the electrodeposition of a field grading layer within a composite encapsulation to cover multiple electrodes of a direct bonded copper (DBC) substrate with a complex layout. The first approach consists in adding a new and fixed electrode on the layout of DBC substrate that will not be polarized or used during normal operation of the module. The second method consists in adding a removable top electrode above the substrate. Results show that the latter approach is potentially the best choice to enable the electrodeposition of a homogenous thickness of field graded layer on a complex DBC layout with multiple adjacent copper tracks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信