具有Tucker秩约束的张量流形

S. Chang, Ziyan Luo, L. Qi
{"title":"具有Tucker秩约束的张量流形","authors":"S. Chang, Ziyan Luo, L. Qi","doi":"10.1142/S0217595921500226","DOIUrl":null,"url":null,"abstract":"Low-rank tensor approximation plays a crucial role in various tensor analysis tasks ranging from science to engineering applications. There are several important problems facing low-rank tensor approximation. First, the rank of an approximating tensor is given without checking feasibility. Second, even such approximating tensors exist, however, current proposed algorithms cannot provide global optimality guarantees. In this work, we define the low-rank tensor set (LRTS) for Tucker rank which is a union of manifolds of tensors with specific Tucker rank. We propose a procedure to describe LRTS semi-algebraically and characterize the properties of this LRTS, e.g., feasibility of tensors manifold, the equations/inequations size of LRTS, algebraic dimensions, etc. Furthermore, if the cost function for tensor approximation is polynomial type, e.g., Frobenius norm, we propose an algorithm to approximate a given tensor with Tucker rank constraints and prove the global optimality of the proposed algorithm through critical sets determined by the semi-algebraic characterization of LRTS.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor Manifold with Tucker Rank Constraints\",\"authors\":\"S. Chang, Ziyan Luo, L. Qi\",\"doi\":\"10.1142/S0217595921500226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-rank tensor approximation plays a crucial role in various tensor analysis tasks ranging from science to engineering applications. There are several important problems facing low-rank tensor approximation. First, the rank of an approximating tensor is given without checking feasibility. Second, even such approximating tensors exist, however, current proposed algorithms cannot provide global optimality guarantees. In this work, we define the low-rank tensor set (LRTS) for Tucker rank which is a union of manifolds of tensors with specific Tucker rank. We propose a procedure to describe LRTS semi-algebraically and characterize the properties of this LRTS, e.g., feasibility of tensors manifold, the equations/inequations size of LRTS, algebraic dimensions, etc. Furthermore, if the cost function for tensor approximation is polynomial type, e.g., Frobenius norm, we propose an algorithm to approximate a given tensor with Tucker rank constraints and prove the global optimality of the proposed algorithm through critical sets determined by the semi-algebraic characterization of LRTS.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0217595921500226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217595921500226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低秩张量近似在从科学到工程应用的各种张量分析任务中起着至关重要的作用。低秩张量近似有几个重要的问题。首先,在不检查可行性的情况下给出一个近似张量的秩。其次,即使存在这样的近似张量,但目前提出的算法不能提供全局最优性保证。本文定义了Tucker秩的低秩张量集(LRTS),它是具有特定Tucker秩的张量流形的并集。我们提出了一种半代数描述LRTS的方法,并描述了这种LRTS的性质,如张量流形的可行性、LRTS的方程/非方程大小、代数维数等。进一步,如果张量逼近的代价函数为多项式型,例如Frobenius范数,我们提出了一种具有Tucker秩约束的张量逼近算法,并通过LRTS的半代数表征确定的临界集证明了该算法的全局最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor Manifold with Tucker Rank Constraints
Low-rank tensor approximation plays a crucial role in various tensor analysis tasks ranging from science to engineering applications. There are several important problems facing low-rank tensor approximation. First, the rank of an approximating tensor is given without checking feasibility. Second, even such approximating tensors exist, however, current proposed algorithms cannot provide global optimality guarantees. In this work, we define the low-rank tensor set (LRTS) for Tucker rank which is a union of manifolds of tensors with specific Tucker rank. We propose a procedure to describe LRTS semi-algebraically and characterize the properties of this LRTS, e.g., feasibility of tensors manifold, the equations/inequations size of LRTS, algebraic dimensions, etc. Furthermore, if the cost function for tensor approximation is polynomial type, e.g., Frobenius norm, we propose an algorithm to approximate a given tensor with Tucker rank constraints and prove the global optimality of the proposed algorithm through critical sets determined by the semi-algebraic characterization of LRTS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信