{"title":"基于随机权矩阵的ELM近似误差分析","authors":"Ran Wang, S. Kwong, D. D. Wang","doi":"10.1142/S0218488513400114","DOIUrl":null,"url":null,"abstract":"It is experimentally observed that the approximate errors of extreme learning machine (ELM) are dependent on the uniformity of training samples after the network architecture is fixed, and the uniformity, which is usually measured by the variance of distances among samples, varies with the linear transformation induced by the random weight matrix. By analyzing the dimension increase process in ELM, this paper gives an approximate relation between the uniformities before and after the linear transformation. Furthermore, by restricting ELM with a two-dimensional space, it gives an upper bound of ELM approximate error which is dependent on the distributive uniformity of training samples. The analytic results provide some useful guidelines to make clear the impact of random weights on ELM approximate ability and improve ELM prediction accuracy.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"96 1","pages":"1-12"},"PeriodicalIF":1.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An analysis of ELM approximate error based on random weight matrix\",\"authors\":\"Ran Wang, S. Kwong, D. D. Wang\",\"doi\":\"10.1142/S0218488513400114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is experimentally observed that the approximate errors of extreme learning machine (ELM) are dependent on the uniformity of training samples after the network architecture is fixed, and the uniformity, which is usually measured by the variance of distances among samples, varies with the linear transformation induced by the random weight matrix. By analyzing the dimension increase process in ELM, this paper gives an approximate relation between the uniformities before and after the linear transformation. Furthermore, by restricting ELM with a two-dimensional space, it gives an upper bound of ELM approximate error which is dependent on the distributive uniformity of training samples. The analytic results provide some useful guidelines to make clear the impact of random weights on ELM approximate ability and improve ELM prediction accuracy.\",\"PeriodicalId\":50283,\"journal\":{\"name\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"volume\":\"96 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2013-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218488513400114\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488513400114","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An analysis of ELM approximate error based on random weight matrix
It is experimentally observed that the approximate errors of extreme learning machine (ELM) are dependent on the uniformity of training samples after the network architecture is fixed, and the uniformity, which is usually measured by the variance of distances among samples, varies with the linear transformation induced by the random weight matrix. By analyzing the dimension increase process in ELM, this paper gives an approximate relation between the uniformities before and after the linear transformation. Furthermore, by restricting ELM with a two-dimensional space, it gives an upper bound of ELM approximate error which is dependent on the distributive uniformity of training samples. The analytic results provide some useful guidelines to make clear the impact of random weights on ELM approximate ability and improve ELM prediction accuracy.
期刊介绍:
The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.