Catalin Ciobirca , Teodoru Popa , Gabriel Gruionu , Thomas Lango , Hakon Olav Leira , Stefan Dan Pastrama , Lucian Gheorghe Gruionu
{"title":"基于行进立方体的虚拟支气管镜检测方法和高效的碰撞检测与分辨算法","authors":"Catalin Ciobirca , Teodoru Popa , Gabriel Gruionu , Thomas Lango , Hakon Olav Leira , Stefan Dan Pastrama , Lucian Gheorghe Gruionu","doi":"10.1016/j.ctmat.2015.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>A novel system for electromagnetic navigation in bronchoscopy (NaviCAD) to improve peripheral lesion targeting and diagnostic is currently under development. The virtual bronchoscopy module of this system, including the collision and resolution algorithm, together with some preliminary tests on a complex phantom are presented in this paper. The NaviCAD system consists of a planning and orientation software, a navigation forceps, and an electromagnetic tracking system connected to a computer running the NaviCAD software. NaviCAD can be used with any bronchoscopy system, it has a short set-up procedure time and learning curve. The system proves to be easy to use, accurate and useful for experienced users and novices, with precision in reaching targets in sub-segmental bronchi where a video-bronchoscope cannot reach.</p></div>","PeriodicalId":10198,"journal":{"name":"Ciência & Tecnologia dos Materiais","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ctmat.2015.12.002","citationCount":"3","resultStr":"{\"title\":\"Virtual bronchoscopy method based on marching cubes and an efficient collision detection and resolution algorithm\",\"authors\":\"Catalin Ciobirca , Teodoru Popa , Gabriel Gruionu , Thomas Lango , Hakon Olav Leira , Stefan Dan Pastrama , Lucian Gheorghe Gruionu\",\"doi\":\"10.1016/j.ctmat.2015.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel system for electromagnetic navigation in bronchoscopy (NaviCAD) to improve peripheral lesion targeting and diagnostic is currently under development. The virtual bronchoscopy module of this system, including the collision and resolution algorithm, together with some preliminary tests on a complex phantom are presented in this paper. The NaviCAD system consists of a planning and orientation software, a navigation forceps, and an electromagnetic tracking system connected to a computer running the NaviCAD software. NaviCAD can be used with any bronchoscopy system, it has a short set-up procedure time and learning curve. The system proves to be easy to use, accurate and useful for experienced users and novices, with precision in reaching targets in sub-segmental bronchi where a video-bronchoscope cannot reach.</p></div>\",\"PeriodicalId\":10198,\"journal\":{\"name\":\"Ciência & Tecnologia dos Materiais\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ctmat.2015.12.002\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ciência & Tecnologia dos Materiais\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0870831217300125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciência & Tecnologia dos Materiais","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0870831217300125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Virtual bronchoscopy method based on marching cubes and an efficient collision detection and resolution algorithm
A novel system for electromagnetic navigation in bronchoscopy (NaviCAD) to improve peripheral lesion targeting and diagnostic is currently under development. The virtual bronchoscopy module of this system, including the collision and resolution algorithm, together with some preliminary tests on a complex phantom are presented in this paper. The NaviCAD system consists of a planning and orientation software, a navigation forceps, and an electromagnetic tracking system connected to a computer running the NaviCAD software. NaviCAD can be used with any bronchoscopy system, it has a short set-up procedure time and learning curve. The system proves to be easy to use, accurate and useful for experienced users and novices, with precision in reaching targets in sub-segmental bronchi where a video-bronchoscope cannot reach.