奇异Volterra积分方程线性二次最优控制问题的因果状态反馈表示

IF 1 4区 数学 Q1 MATHEMATICS
Shuo Han, Ping-Zong Lin, J. Yong
{"title":"奇异Volterra积分方程线性二次最优控制问题的因果状态反馈表示","authors":"Shuo Han, Ping-Zong Lin, J. Yong","doi":"10.3934/mcrf.2022038","DOIUrl":null,"url":null,"abstract":"This paper is concerned with a linear quadratic optimal control for a class of singular Volterra integral equations. Our framework covers the problems for fractional differential equations. Under some necessary convexity conditions, an optimal control exists, and can be characterized via Fréchet derivative of the quadratic functional in a Hilbert space or via maximum principle type necessary conditions. However, these (equivalent) characterizations are not causal, meaning that the current value of the optimal control depends on the future values of the optimal state. Practically, this is not feasible. We obtain a causal state feedback representation of the optimal control via a Fredholm integral equation. Finally, a concrete form of our results for fractional differential equations is presented.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"121 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Causal state feedback representation for linear quadratic optimal control problems of singular Volterra integral equations\",\"authors\":\"Shuo Han, Ping-Zong Lin, J. Yong\",\"doi\":\"10.3934/mcrf.2022038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with a linear quadratic optimal control for a class of singular Volterra integral equations. Our framework covers the problems for fractional differential equations. Under some necessary convexity conditions, an optimal control exists, and can be characterized via Fréchet derivative of the quadratic functional in a Hilbert space or via maximum principle type necessary conditions. However, these (equivalent) characterizations are not causal, meaning that the current value of the optimal control depends on the future values of the optimal state. Practically, this is not feasible. We obtain a causal state feedback representation of the optimal control via a Fredholm integral equation. Finally, a concrete form of our results for fractional differential equations is presented.\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022038\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

研究了一类奇异Volterra积分方程的线性二次最优控制问题。我们的框架涵盖了分数阶微分方程的问题。在某些必要的凸性条件下,存在一个最优控制,该最优控制可以通过Hilbert空间中二次泛函的fracimchet导数或最大原理型必要条件来表征。然而,这些(等效的)特征不是因果关系,这意味着最优控制的当前值取决于最优状态的未来值。实际上,这是不可行的。通过Fredholm积分方程得到了最优控制的因果状态反馈表示。最后,给出了分数阶微分方程结果的具体形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal state feedback representation for linear quadratic optimal control problems of singular Volterra integral equations
This paper is concerned with a linear quadratic optimal control for a class of singular Volterra integral equations. Our framework covers the problems for fractional differential equations. Under some necessary convexity conditions, an optimal control exists, and can be characterized via Fréchet derivative of the quadratic functional in a Hilbert space or via maximum principle type necessary conditions. However, these (equivalent) characterizations are not causal, meaning that the current value of the optimal control depends on the future values of the optimal state. Practically, this is not feasible. We obtain a causal state feedback representation of the optimal control via a Fredholm integral equation. Finally, a concrete form of our results for fractional differential equations is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Control and Related Fields
Mathematical Control and Related Fields MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
8.30%
发文量
67
期刊介绍: MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信