关于边缘彩色饱和度问题

IF 0.4 Q4 MATHEMATICS, APPLIED
M. Ferrara, Daniel R. Johnston, Sarah Loeb, Florian Pfender, Alex Schulte, Heather C. Smith, Eric Sullivan, Michael Tait, C. Tompkins
{"title":"关于边缘彩色饱和度问题","authors":"M. Ferrara, Daniel R. Johnston, Sarah Loeb, Florian Pfender, Alex Schulte, Heather C. Smith, Eric Sullivan, Michael Tait, C. Tompkins","doi":"10.4310/joc.2020.v11.n4.a4","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{C}$ be a family of edge-colored graphs. A $t$-edge colored graph $G$ is $(\\mathcal{C}, t)$-saturated if $G$ does not contain any graph in $\\mathcal{C}$ but the addition of any edge in any color in $[t]$ creates a copy of some graph in $\\mathcal{C}$. Similarly to classical saturation functions, define $\\mathrm{sat}_t(n, \\mathcal{C})$ to be the minimum number of edges in a $(\\mathcal{C},t)$ saturated graph. Let $\\mathcal{C}_r(H)$ be the family consisting of every edge-colored copy of $H$ which uses exactly $r$ colors. \nIn this paper we consider a variety of colored saturation problems. We determine the order of magnitude for $\\mathrm{sat}_t(n, \\mathcal{C}_r(K_k))$ for all $r$, showing a sharp change in behavior when $r\\geq \\binom{k-1}{2}+2$. A particular case of this theorem proves a conjecture of Barrus, Ferrara, Vandenbussche, and Wenger. We determine $\\mathrm{sat}_t(n, \\mathcal{C}_2(K_3))$ exactly and determine the extremal graphs. Additionally, we document some interesting irregularities in the colored saturation function.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"239 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On edge-colored saturation problems\",\"authors\":\"M. Ferrara, Daniel R. Johnston, Sarah Loeb, Florian Pfender, Alex Schulte, Heather C. Smith, Eric Sullivan, Michael Tait, C. Tompkins\",\"doi\":\"10.4310/joc.2020.v11.n4.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathcal{C}$ be a family of edge-colored graphs. A $t$-edge colored graph $G$ is $(\\\\mathcal{C}, t)$-saturated if $G$ does not contain any graph in $\\\\mathcal{C}$ but the addition of any edge in any color in $[t]$ creates a copy of some graph in $\\\\mathcal{C}$. Similarly to classical saturation functions, define $\\\\mathrm{sat}_t(n, \\\\mathcal{C})$ to be the minimum number of edges in a $(\\\\mathcal{C},t)$ saturated graph. Let $\\\\mathcal{C}_r(H)$ be the family consisting of every edge-colored copy of $H$ which uses exactly $r$ colors. \\nIn this paper we consider a variety of colored saturation problems. We determine the order of magnitude for $\\\\mathrm{sat}_t(n, \\\\mathcal{C}_r(K_k))$ for all $r$, showing a sharp change in behavior when $r\\\\geq \\\\binom{k-1}{2}+2$. A particular case of this theorem proves a conjecture of Barrus, Ferrara, Vandenbussche, and Wenger. We determine $\\\\mathrm{sat}_t(n, \\\\mathcal{C}_2(K_3))$ exactly and determine the extremal graphs. Additionally, we document some interesting irregularities in the colored saturation function.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"239 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2020.v11.n4.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2020.v11.n4.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

摘要

设$\mathcal{C}$为边色图族。如果$G$不包含$\mathcal{C}$中的任何图形,则$t$ -edge彩色图形$G$是$(\mathcal{C}, t)$ -饱和的,但是在$[t]$中添加任何颜色的任何边缘会创建$\mathcal{C}$中某些图形的副本。与经典饱和函数类似,定义$\mathrm{sat}_t(n, \mathcal{C})$为$(\mathcal{C},t)$饱和图中的最小边数。假设$\mathcal{C}_r(H)$是由使用$r$颜色的$H$的每个边缘彩色副本组成的家族。本文考虑了各种彩色饱和度问题。我们确定了所有$r$的$\mathrm{sat}_t(n, \mathcal{C}_r(K_k))$的数量级,显示了$r\geq \binom{k-1}{2}+2$时行为的急剧变化。这个定理的一个特例证明了Barrus、Ferrara、Vandenbussche和Wenger的一个猜想。我们精确地确定了$\mathrm{sat}_t(n, \mathcal{C}_2(K_3))$,并确定了极值图。此外,我们在彩色饱和度函数中记录了一些有趣的不规则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On edge-colored saturation problems
Let $\mathcal{C}$ be a family of edge-colored graphs. A $t$-edge colored graph $G$ is $(\mathcal{C}, t)$-saturated if $G$ does not contain any graph in $\mathcal{C}$ but the addition of any edge in any color in $[t]$ creates a copy of some graph in $\mathcal{C}$. Similarly to classical saturation functions, define $\mathrm{sat}_t(n, \mathcal{C})$ to be the minimum number of edges in a $(\mathcal{C},t)$ saturated graph. Let $\mathcal{C}_r(H)$ be the family consisting of every edge-colored copy of $H$ which uses exactly $r$ colors. In this paper we consider a variety of colored saturation problems. We determine the order of magnitude for $\mathrm{sat}_t(n, \mathcal{C}_r(K_k))$ for all $r$, showing a sharp change in behavior when $r\geq \binom{k-1}{2}+2$. A particular case of this theorem proves a conjecture of Barrus, Ferrara, Vandenbussche, and Wenger. We determine $\mathrm{sat}_t(n, \mathcal{C}_2(K_3))$ exactly and determine the extremal graphs. Additionally, we document some interesting irregularities in the colored saturation function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信