{"title":"g -凸空间中的向量变分不等式","authors":"Maryam Salehnejad, M. Azhini","doi":"10.5556/j.tkjm.53.2022.3494","DOIUrl":null,"url":null,"abstract":"\n\n\nInthispaper,westudysomeexistencetheoremsofsolutionsforvectorvariational inequality by using the generalized KKM theorem. Also, we investigate the properties of so- lution set of the Minty vector variational inequality in G–convex spaces. Finally, we prove the equivalence between a Browder fixed point theorem type and the vector variational in- equality in G-convex spaces. \n\n\n","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vector Variational Inequalities In G-Convex Spaces\",\"authors\":\"Maryam Salehnejad, M. Azhini\",\"doi\":\"10.5556/j.tkjm.53.2022.3494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nInthispaper,westudysomeexistencetheoremsofsolutionsforvectorvariational inequality by using the generalized KKM theorem. Also, we investigate the properties of so- lution set of the Minty vector variational inequality in G–convex spaces. Finally, we prove the equivalence between a Browder fixed point theorem type and the vector variational in- equality in G-convex spaces. \\n\\n\\n\",\"PeriodicalId\":45776,\"journal\":{\"name\":\"Tamkang Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tamkang Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5556/j.tkjm.53.2022.3494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/j.tkjm.53.2022.3494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Vector Variational Inequalities In G-Convex Spaces
Inthispaper,westudysomeexistencetheoremsofsolutionsforvectorvariational inequality by using the generalized KKM theorem. Also, we investigate the properties of so- lution set of the Minty vector variational inequality in G–convex spaces. Finally, we prove the equivalence between a Browder fixed point theorem type and the vector variational in- equality in G-convex spaces.
期刊介绍:
To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.