{"title":"大规模视觉识别中放松层次的判别学习","authors":"Tianshi Gao, D. Koller","doi":"10.1109/ICCV.2011.6126481","DOIUrl":null,"url":null,"abstract":"In the real visual world, the number of categories a classifier needs to discriminate is on the order of hundreds or thousands. For example, the SUN dataset [24] contains 899 scene categories and ImageNet [6] has 15,589 synsets. Designing a multiclass classifier that is both accurate and fast at test time is an extremely important problem in both machine learning and computer vision communities. To achieve a good trade-off between accuracy and speed, we adopt the relaxed hierarchy structure from [15], where a set of binary classifiers are organized in a tree or DAG (directed acyclic graph) structure. At each node, classes are colored into positive and negative groups which are separated by a binary classifier while a subset of confusing classes is ignored. We color the classes and learn the induced binary classifier simultaneously using a unified and principled max-margin optimization. We provide an analysis on generalization error to justify our design. Our method has been tested on both Caltech-256 (object recognition) [9] and the SUN dataset (scene classification) [24], and shows significant improvement over existing methods.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"181","resultStr":"{\"title\":\"Discriminative learning of relaxed hierarchy for large-scale visual recognition\",\"authors\":\"Tianshi Gao, D. Koller\",\"doi\":\"10.1109/ICCV.2011.6126481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the real visual world, the number of categories a classifier needs to discriminate is on the order of hundreds or thousands. For example, the SUN dataset [24] contains 899 scene categories and ImageNet [6] has 15,589 synsets. Designing a multiclass classifier that is both accurate and fast at test time is an extremely important problem in both machine learning and computer vision communities. To achieve a good trade-off between accuracy and speed, we adopt the relaxed hierarchy structure from [15], where a set of binary classifiers are organized in a tree or DAG (directed acyclic graph) structure. At each node, classes are colored into positive and negative groups which are separated by a binary classifier while a subset of confusing classes is ignored. We color the classes and learn the induced binary classifier simultaneously using a unified and principled max-margin optimization. We provide an analysis on generalization error to justify our design. Our method has been tested on both Caltech-256 (object recognition) [9] and the SUN dataset (scene classification) [24], and shows significant improvement over existing methods.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"181\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discriminative learning of relaxed hierarchy for large-scale visual recognition
In the real visual world, the number of categories a classifier needs to discriminate is on the order of hundreds or thousands. For example, the SUN dataset [24] contains 899 scene categories and ImageNet [6] has 15,589 synsets. Designing a multiclass classifier that is both accurate and fast at test time is an extremely important problem in both machine learning and computer vision communities. To achieve a good trade-off between accuracy and speed, we adopt the relaxed hierarchy structure from [15], where a set of binary classifiers are organized in a tree or DAG (directed acyclic graph) structure. At each node, classes are colored into positive and negative groups which are separated by a binary classifier while a subset of confusing classes is ignored. We color the classes and learn the induced binary classifier simultaneously using a unified and principled max-margin optimization. We provide an analysis on generalization error to justify our design. Our method has been tested on both Caltech-256 (object recognition) [9] and the SUN dataset (scene classification) [24], and shows significant improvement over existing methods.