康托树的映射类组只有几何正规子群

A. McLeay
{"title":"康托树的映射类组只有几何正规子群","authors":"A. McLeay","doi":"10.1090/proc/15559","DOIUrl":null,"url":null,"abstract":"A normal subgroup of the (extended) mapping class group of a surface is said to be geometric if its automorphism group is the mapping class group. We prove that in the case of the Cantor tree surface, every normal subgroup is geometric. We note that there is no non-trivial finite-type mapping class group for which this statement is true. We study a generalisation of the curve graph, proving that its automorphism group is again the mapping class group. This strategy is adapted from that of Brendle-Margalit and the author for certain normal subgroups in the finite-type setting.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The mapping class group of the Cantor tree has only geometric normal subgroups\",\"authors\":\"A. McLeay\",\"doi\":\"10.1090/proc/15559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A normal subgroup of the (extended) mapping class group of a surface is said to be geometric if its automorphism group is the mapping class group. We prove that in the case of the Cantor tree surface, every normal subgroup is geometric. We note that there is no non-trivial finite-type mapping class group for which this statement is true. We study a generalisation of the curve graph, proving that its automorphism group is again the mapping class group. This strategy is adapted from that of Brendle-Margalit and the author for certain normal subgroups in the finite-type setting.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如果一个曲面的自同构群是映射类群,则该曲面的(扩展)映射类群的正规子群是几何的。我们证明了在康托树曲面的情况下,每个正规子群都是几何的。我们注意到,不存在非平凡有限类型映射类组,对于该命题是成立的。我们研究了曲线图的一个推广,证明了它的自同构群也是映射类群。这种策略是由Brendle-Margalit和作者的策略改编而来的,适用于有限型环境下的某些正常子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The mapping class group of the Cantor tree has only geometric normal subgroups
A normal subgroup of the (extended) mapping class group of a surface is said to be geometric if its automorphism group is the mapping class group. We prove that in the case of the Cantor tree surface, every normal subgroup is geometric. We note that there is no non-trivial finite-type mapping class group for which this statement is true. We study a generalisation of the curve graph, proving that its automorphism group is again the mapping class group. This strategy is adapted from that of Brendle-Margalit and the author for certain normal subgroups in the finite-type setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信