{"title":"端到端优化元透镜双透镜,实现高质量广角成像","authors":"Yeong-Su Park, Byoungho Lee, Yoonchan Jeong","doi":"10.1117/12.2677367","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an advanced method to jointly optimize doublet metalens and deep learning-based postprocessing networks for wide-angle and full-color imaging with high fidelity. The optical image formation module in the spatially-variant system and a reconstruction network module are implemented in a differentiable manner. By premitigating coma aberration with doublet metalens, the proposed model outperforms both cases of singlet structure and analogous electronic implementations in terms of reconstruction accuracy.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"917 1","pages":"126460D - 126460D-3"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End-to-end optimization of meta-lens doublet for high-quality wide-angle imaging\",\"authors\":\"Yeong-Su Park, Byoungho Lee, Yoonchan Jeong\",\"doi\":\"10.1117/12.2677367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an advanced method to jointly optimize doublet metalens and deep learning-based postprocessing networks for wide-angle and full-color imaging with high fidelity. The optical image formation module in the spatially-variant system and a reconstruction network module are implemented in a differentiable manner. By premitigating coma aberration with doublet metalens, the proposed model outperforms both cases of singlet structure and analogous electronic implementations in terms of reconstruction accuracy.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"917 1\",\"pages\":\"126460D - 126460D-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2677367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2677367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
End-to-end optimization of meta-lens doublet for high-quality wide-angle imaging
In this paper, we propose an advanced method to jointly optimize doublet metalens and deep learning-based postprocessing networks for wide-angle and full-color imaging with high fidelity. The optical image formation module in the spatially-variant system and a reconstruction network module are implemented in a differentiable manner. By premitigating coma aberration with doublet metalens, the proposed model outperforms both cases of singlet structure and analogous electronic implementations in terms of reconstruction accuracy.