齐次期望传播的出口与密度演化分析

J. Walsh
{"title":"齐次期望传播的出口与密度演化分析","authors":"J. Walsh","doi":"10.1109/ISIT.2007.4557111","DOIUrl":null,"url":null,"abstract":"We extend Gaussian approximation density evolution (DE) techniques from the soft iterative decoding of turbo and low density parity check (LDPC) codes to the performance and convergence analysis of belief propagation (BP) and expectation propagation (EP) in randomly connected very large sparse homogeneous factor graphs. A strict form of the Gaussian approximation allows the use of extrinsic information transfer (EXIT) charts to study the performance and convergence of the algorithms. The result is a graphical tool that design engineers can use to quickly predict the performance and convergence speed of BP or EP applied to these inference problems. We demonstrate the utility of the new tool, and a motivation for the generalization of the results, by showing how it may surprisingly be applied to determine the performance of a scheme for distributed data fusion in a sensor network.","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXIT and Density Evolution Analysis for Homogeneous Expectation Propagation\",\"authors\":\"J. Walsh\",\"doi\":\"10.1109/ISIT.2007.4557111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend Gaussian approximation density evolution (DE) techniques from the soft iterative decoding of turbo and low density parity check (LDPC) codes to the performance and convergence analysis of belief propagation (BP) and expectation propagation (EP) in randomly connected very large sparse homogeneous factor graphs. A strict form of the Gaussian approximation allows the use of extrinsic information transfer (EXIT) charts to study the performance and convergence of the algorithms. The result is a graphical tool that design engineers can use to quickly predict the performance and convergence speed of BP or EP applied to these inference problems. We demonstrate the utility of the new tool, and a motivation for the generalization of the results, by showing how it may surprisingly be applied to determine the performance of a scheme for distributed data fusion in a sensor network.\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2007.4557111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2007.4557111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将高斯近似密度演化(DE)技术从turbo码和低密度奇偶校验码(LDPC)的软迭代译码扩展到随机连接的超大稀疏齐次因子图中信念传播(BP)和期望传播(EP)的性能和收敛分析。高斯近似的严格形式允许使用外在信息传递(EXIT)图来研究算法的性能和收敛性。结果是一个图形工具,设计工程师可以使用它来快速预测应用于这些推理问题的BP或EP的性能和收敛速度。我们展示了新工具的实用性,以及推广结果的动机,展示了它如何出人意料地应用于确定传感器网络中分布式数据融合方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXIT and Density Evolution Analysis for Homogeneous Expectation Propagation
We extend Gaussian approximation density evolution (DE) techniques from the soft iterative decoding of turbo and low density parity check (LDPC) codes to the performance and convergence analysis of belief propagation (BP) and expectation propagation (EP) in randomly connected very large sparse homogeneous factor graphs. A strict form of the Gaussian approximation allows the use of extrinsic information transfer (EXIT) charts to study the performance and convergence of the algorithms. The result is a graphical tool that design engineers can use to quickly predict the performance and convergence speed of BP or EP applied to these inference problems. We demonstrate the utility of the new tool, and a motivation for the generalization of the results, by showing how it may surprisingly be applied to determine the performance of a scheme for distributed data fusion in a sensor network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信