性质为R和- SR的加权非冕图

Uzma Ahmad, S. Hameed, Sadia Akhter
{"title":"性质为R和- SR的加权非冕图","authors":"Uzma Ahmad, S. Hameed, Sadia Akhter","doi":"10.48129/kjs.17497","DOIUrl":null,"url":null,"abstract":"Let Gw be a simple weighted graph with adjacency matrix A(Gw). The set of all eigenvalues of A(Gw) is called the spectrum of weighted graph Gw denoted by σ(Gw). The reciprocal eigenvalue property (or property R) for a connected weighted nonsingular graph Gw is defined as, if η ∈ σ(Gw) then 1 η ∈ σ(Gw). Further, if η and 1 η have the same multiplicities for each η ∈ σ(Gw) then this graph is said to have strong reciprocal eigenvalue property (or property SR). Similarly, a connected weighted nonsingular graph Gw is said to have anti-reciprocal eigenvalue property (or property −R) if η ∈ σ(Gw) then −1 η ∈ σ(Gw). Furthermore, if η and −1 η have the same multiplicities for each η ∈ σ(Gw) then strong anti-reciprocal eigenvalue property (or property −SR) holds for the weighted graph Gw. In this article, classes of weighted noncorona graphs satisfying property R and property −SR are studied.","PeriodicalId":49933,"journal":{"name":"Kuwait Journal of Science & Engineering","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On weighted noncorona graphs with property R and −SR\",\"authors\":\"Uzma Ahmad, S. Hameed, Sadia Akhter\",\"doi\":\"10.48129/kjs.17497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Gw be a simple weighted graph with adjacency matrix A(Gw). The set of all eigenvalues of A(Gw) is called the spectrum of weighted graph Gw denoted by σ(Gw). The reciprocal eigenvalue property (or property R) for a connected weighted nonsingular graph Gw is defined as, if η ∈ σ(Gw) then 1 η ∈ σ(Gw). Further, if η and 1 η have the same multiplicities for each η ∈ σ(Gw) then this graph is said to have strong reciprocal eigenvalue property (or property SR). Similarly, a connected weighted nonsingular graph Gw is said to have anti-reciprocal eigenvalue property (or property −R) if η ∈ σ(Gw) then −1 η ∈ σ(Gw). Furthermore, if η and −1 η have the same multiplicities for each η ∈ σ(Gw) then strong anti-reciprocal eigenvalue property (or property −SR) holds for the weighted graph Gw. In this article, classes of weighted noncorona graphs satisfying property R and property −SR are studied.\",\"PeriodicalId\":49933,\"journal\":{\"name\":\"Kuwait Journal of Science & Engineering\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48129/kjs.17497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48129/kjs.17497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设Gw为邻接矩阵a (Gw)的简单加权图。A(Gw)的所有特征值的集合称为加权图Gw的谱,用σ(Gw)表示。连通加权非奇异图Gw的互易特征值性质(或性质R)定义为,如果η∈σ(Gw),则1 η∈σ(Gw)。更进一步,如果η和1 η对于每个η∈σ(Gw)具有相同的多重度,则该图具有强互反特征值性质(或性质SR)。同样,如果η∈σ(Gw),则- 1 η∈σ(Gw),则连通加权非奇异图Gw具有反倒特征值性质(或性质- R)。此外,如果η和- 1 η对于每个η∈σ(Gw)具有相同的多重度,则对加权图Gw具有强反互易特征值性质(或性质- SR)。研究了一类满足性质R和- SR的加权非冕图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On weighted noncorona graphs with property R and −SR
Let Gw be a simple weighted graph with adjacency matrix A(Gw). The set of all eigenvalues of A(Gw) is called the spectrum of weighted graph Gw denoted by σ(Gw). The reciprocal eigenvalue property (or property R) for a connected weighted nonsingular graph Gw is defined as, if η ∈ σ(Gw) then 1 η ∈ σ(Gw). Further, if η and 1 η have the same multiplicities for each η ∈ σ(Gw) then this graph is said to have strong reciprocal eigenvalue property (or property SR). Similarly, a connected weighted nonsingular graph Gw is said to have anti-reciprocal eigenvalue property (or property −R) if η ∈ σ(Gw) then −1 η ∈ σ(Gw). Furthermore, if η and −1 η have the same multiplicities for each η ∈ σ(Gw) then strong anti-reciprocal eigenvalue property (or property −SR) holds for the weighted graph Gw. In this article, classes of weighted noncorona graphs satisfying property R and property −SR are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kuwait Journal of Science & Engineering
Kuwait Journal of Science & Engineering MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信