随机截断的特征多项式:矩、对偶性和渐近性

Pub Date : 2021-09-21 DOI:10.1142/s2010326322500496
A. Serebryakov, N. Simm, Guillaume Dubach
{"title":"随机截断的特征多项式:矩、对偶性和渐近性","authors":"A. Serebryakov, N. Simm, Guillaume Dubach","doi":"10.1142/s2010326322500496","DOIUrl":null,"url":null,"abstract":"We study moments of characteristic polynomials of truncated Haar distributed matrices from the three classical compact groups O(N), U(N) and Sp(2N). For finite matrix size we calculate the moments in terms of hypergeometric functions of matrix argument and give explicit integral representations highlighting the duality between the moment and the matrix size as well as the duality between the orthogonal and symplectic cases. Asymptotic expansions in strong and weak non-unitarity regimes are obtained. Using the connection to matrix hypergeometric functions, we establish limit theorems for the log-modulus of the characteristic polynomial evaluated on the unit circle.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characteristic polynomials of random truncations: moments, duality and asymptotics\",\"authors\":\"A. Serebryakov, N. Simm, Guillaume Dubach\",\"doi\":\"10.1142/s2010326322500496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study moments of characteristic polynomials of truncated Haar distributed matrices from the three classical compact groups O(N), U(N) and Sp(2N). For finite matrix size we calculate the moments in terms of hypergeometric functions of matrix argument and give explicit integral representations highlighting the duality between the moment and the matrix size as well as the duality between the orthogonal and symplectic cases. Asymptotic expansions in strong and weak non-unitarity regimes are obtained. Using the connection to matrix hypergeometric functions, we establish limit theorems for the log-modulus of the characteristic polynomial evaluated on the unit circle.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了3个经典紧群O(N)、U(N)和Sp(2N)上截断Haar分布矩阵的特征多项式矩。对于有限大小的矩阵,我们用矩阵参数的超几何函数来计算矩,并给出了明确的积分表示,突出了矩与矩阵大小之间的对偶性以及正交和辛情况之间的对偶性。得到了强、弱非统一域的渐近展开式。利用与矩阵超几何函数的联系,建立了单位圆上特征多项式对数模的极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Characteristic polynomials of random truncations: moments, duality and asymptotics
We study moments of characteristic polynomials of truncated Haar distributed matrices from the three classical compact groups O(N), U(N) and Sp(2N). For finite matrix size we calculate the moments in terms of hypergeometric functions of matrix argument and give explicit integral representations highlighting the duality between the moment and the matrix size as well as the duality between the orthogonal and symplectic cases. Asymptotic expansions in strong and weak non-unitarity regimes are obtained. Using the connection to matrix hypergeometric functions, we establish limit theorems for the log-modulus of the characteristic polynomial evaluated on the unit circle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信