预测瞬态振动和声级的局部能量方程

Mohammed Najib Ichchou, Louis Jezequel
{"title":"预测瞬态振动和声级的局部能量方程","authors":"Mohammed Najib Ichchou,&nbsp;Louis Jezequel","doi":"10.1016/S1620-7742(01)01384-8","DOIUrl":null,"url":null,"abstract":"<div><p>Insights and additionnal clarifications concerning the energy diffusion model [4] are in concern herein. We showed in former times under steady state conditions, that the diffusion model is well suited for an uncorrelated plane wave dynamics [7], energy behaviour modelling. We will prove, in this short note, that the later is not enough when transient dynamics is in concern. We thus propose a new equation alternative to the diffusion equation.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 9","pages":"Pages 663-670"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01384-8","citationCount":"1","resultStr":"{\"title\":\"Équation énergétique locale pour la prevision des niveaux vibratoires et acoustiques instationnaires\",\"authors\":\"Mohammed Najib Ichchou,&nbsp;Louis Jezequel\",\"doi\":\"10.1016/S1620-7742(01)01384-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Insights and additionnal clarifications concerning the energy diffusion model [4] are in concern herein. We showed in former times under steady state conditions, that the diffusion model is well suited for an uncorrelated plane wave dynamics [7], energy behaviour modelling. We will prove, in this short note, that the later is not enough when transient dynamics is in concern. We thus propose a new equation alternative to the diffusion equation.</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 9\",\"pages\":\"Pages 663-670\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01384-8\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1620774201013848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

关于能量扩散模型[4]的见解和额外的澄清在这里受到关注。我们以前在稳态条件下表明,扩散模型非常适合于不相关平面波动力学[7],能量行为模型。我们将在这篇短文中证明,当涉及瞬态动力学时,后者是不够的。因此,我们提出了一个替代扩散方程的新方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Équation énergétique locale pour la prevision des niveaux vibratoires et acoustiques instationnaires

Insights and additionnal clarifications concerning the energy diffusion model [4] are in concern herein. We showed in former times under steady state conditions, that the diffusion model is well suited for an uncorrelated plane wave dynamics [7], energy behaviour modelling. We will prove, in this short note, that the later is not enough when transient dynamics is in concern. We thus propose a new equation alternative to the diffusion equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信