基于关联规则的k -均值聚类算法研究

Wang Jun, Ouyang Zheng-zheng
{"title":"基于关联规则的k -均值聚类算法研究","authors":"Wang Jun, Ouyang Zheng-zheng","doi":"10.1109/CESCE.2010.26","DOIUrl":null,"url":null,"abstract":"With the continued expansion of network resources and the rapid change of old and new information, the traditional information retrieval is difficult to adapt to the need of management of mass electronic data. It is a very important aspect of how to locate the information you want conveniently and accurately and improve the efficiency of search engines.","PeriodicalId":6371,"journal":{"name":"2010 International Conference on Challenges in Environmental Science and Computer Engineering","volume":"134 1","pages":"285-286"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Research of K-means Clustering Algorithm Based on Association Rules\",\"authors\":\"Wang Jun, Ouyang Zheng-zheng\",\"doi\":\"10.1109/CESCE.2010.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continued expansion of network resources and the rapid change of old and new information, the traditional information retrieval is difficult to adapt to the need of management of mass electronic data. It is a very important aspect of how to locate the information you want conveniently and accurately and improve the efficiency of search engines.\",\"PeriodicalId\":6371,\"journal\":{\"name\":\"2010 International Conference on Challenges in Environmental Science and Computer Engineering\",\"volume\":\"134 1\",\"pages\":\"285-286\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Challenges in Environmental Science and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CESCE.2010.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Challenges in Environmental Science and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CESCE.2010.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着网络资源的不断扩充和新老信息的快速变化,传统的信息检索方式已难以适应海量电子数据管理的需要。如何方便、准确地找到自己想要的信息,提高搜索引擎的效率,是一个非常重要的方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Research of K-means Clustering Algorithm Based on Association Rules
With the continued expansion of network resources and the rapid change of old and new information, the traditional information retrieval is difficult to adapt to the need of management of mass electronic data. It is a very important aspect of how to locate the information you want conveniently and accurately and improve the efficiency of search engines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信