计算有界度进化树之间的四重奏距离

M. Stissing, Christian N. S. Pedersen, T. Mailund, G. Brodal, Rolf Fagerberg
{"title":"计算有界度进化树之间的四重奏距离","authors":"M. Stissing, Christian N. S. Pedersen, T. Mailund, G. Brodal, Rolf Fagerberg","doi":"10.1142/9781860947995_0013","DOIUrl":null,"url":null,"abstract":"We present an algorithm for calculating the quartet distance between two evolutionary trees of bounded degree on a common set of n species. The previous best algorithm has running time O(d2n2) when considering trees, where no node is of more than degree d. The algorithm developed herein has running time O(d9n logn)) which makes it the first algorithm for computing the quartet distance between non-binary trees which has a sub-quadratic worst case running time.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"86 1","pages":"101-110"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Computing the Quartet Distance Between Evolutionary Trees of Bounded Degree\",\"authors\":\"M. Stissing, Christian N. S. Pedersen, T. Mailund, G. Brodal, Rolf Fagerberg\",\"doi\":\"10.1142/9781860947995_0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for calculating the quartet distance between two evolutionary trees of bounded degree on a common set of n species. The previous best algorithm has running time O(d2n2) when considering trees, where no node is of more than degree d. The algorithm developed herein has running time O(d9n logn)) which makes it the first algorithm for computing the quartet distance between non-binary trees which has a sub-quadratic worst case running time.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"86 1\",\"pages\":\"101-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947995_0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947995_0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

提出了一种在n个物种的公共集合上计算两个有界度进化树之间的四重奏距离的算法。先前的最佳算法在考虑树时的运行时间为O(d2n2),其中节点不超过d度。本文开发的算法的运行时间为O(d9n logn)),这使得它成为第一个计算具有次二次最坏情况运行时间的非二叉树之间的四维距离的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the Quartet Distance Between Evolutionary Trees of Bounded Degree
We present an algorithm for calculating the quartet distance between two evolutionary trees of bounded degree on a common set of n species. The previous best algorithm has running time O(d2n2) when considering trees, where no node is of more than degree d. The algorithm developed herein has running time O(d9n logn)) which makes it the first algorithm for computing the quartet distance between non-binary trees which has a sub-quadratic worst case running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信