基于复学生t分布的独立低秩矩阵分析盲音频源分离

Shinichi Mogami, Daichi Kitamura, Yoshiki Mitsui, Norihiro Takamune, H. Saruwatari, Nobutaka Ono
{"title":"基于复学生t分布的独立低秩矩阵分析盲音频源分离","authors":"Shinichi Mogami, Daichi Kitamura, Yoshiki Mitsui, Norihiro Takamune, H. Saruwatari, Nobutaka Ono","doi":"10.1109/MLSP.2017.8168129","DOIUrl":null,"url":null,"abstract":"In this paper, we generalize a source generative model in a state-of-the-art blind source separation (BSS), independent low-rank matrix analysis (ILRMA). ILRMA is a unified method of frequency-domain independent component analysis and nonnegative matrix factorization and can provide better performance for audio BSS tasks. To further improve the performance and stability of the separation, we introduce an isotropic complex Student's t-distribution as a source generative model, which includes the isotropic complex Gaussian distribution used in conventional ILRMA. Experiments are conducted using both music and speech BSS tasks, and the results show the validity of the proposed method.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"132 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Independent low-rank matrix analysis based on complex student's t-distribution for blind audio source separation\",\"authors\":\"Shinichi Mogami, Daichi Kitamura, Yoshiki Mitsui, Norihiro Takamune, H. Saruwatari, Nobutaka Ono\",\"doi\":\"10.1109/MLSP.2017.8168129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we generalize a source generative model in a state-of-the-art blind source separation (BSS), independent low-rank matrix analysis (ILRMA). ILRMA is a unified method of frequency-domain independent component analysis and nonnegative matrix factorization and can provide better performance for audio BSS tasks. To further improve the performance and stability of the separation, we introduce an isotropic complex Student's t-distribution as a source generative model, which includes the isotropic complex Gaussian distribution used in conventional ILRMA. Experiments are conducted using both music and speech BSS tasks, and the results show the validity of the proposed method.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"132 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在本文中,我们推广了最先进的盲源分离(BSS),独立低秩矩阵分析(ILRMA)中的源生成模型。ILRMA是一种统一的频域独立分量分析和非负矩阵分解方法,可以为音频BSS任务提供更好的性能。为了进一步提高分离的性能和稳定性,我们引入了一个各向同性复Student's t分布作为源生成模型,其中包括传统ILRMA中使用的各向同性复高斯分布。用音乐和语音两种BSS任务进行了实验,结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent low-rank matrix analysis based on complex student's t-distribution for blind audio source separation
In this paper, we generalize a source generative model in a state-of-the-art blind source separation (BSS), independent low-rank matrix analysis (ILRMA). ILRMA is a unified method of frequency-domain independent component analysis and nonnegative matrix factorization and can provide better performance for audio BSS tasks. To further improve the performance and stability of the separation, we introduce an isotropic complex Student's t-distribution as a source generative model, which includes the isotropic complex Gaussian distribution used in conventional ILRMA. Experiments are conducted using both music and speech BSS tasks, and the results show the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信