M. M. Kasaei, H. M. Naeini, B. Abbaszadeh, S. Hashemi, L. D. da Silva
{"title":"采用先进密封方法改善管材液压成形过程中的物料流动","authors":"M. M. Kasaei, H. M. Naeini, B. Abbaszadeh, S. Hashemi, L. D. da Silva","doi":"10.1177/09544054231184914","DOIUrl":null,"url":null,"abstract":"In this paper, two advanced sealing methods are proposed to enhance the formability of aluminium alloys in the tube hydroforming process. These methods are aimed at omitting friction force at the contact area between the tube and the die in the feed region and facilitating the material flow to the deformation region. The advanced sealing methods are numerically and experimentally examined against the conventional sealing method by conducting the free bulge test on AA6063 aluminium tubes. The deformation mechanics are deeply analysed in the principal strain space to identify the influence of the sealing methods on deformation paths. In addition, the effectiveness of the advanced sealing methods is evaluated under different lubrication conditions and contact lengths in the feed region. Results show that in the advanced sealing methods compared to the conventional one, the thickness in the feed region does not increase and the necking occurs in larger in-plane strains, leading to a higher bulge height. Results also allow concluding that a higher bulge height is formed using the second advanced sealing method, in which the tube is pressurized from both sides in the feed region. Thus, the advanced sealing methods are recommended for tube hydroforming of aluminium alloys with low formability.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"4 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of material flow in tube hydroforming by advanced sealing methods\",\"authors\":\"M. M. Kasaei, H. M. Naeini, B. Abbaszadeh, S. Hashemi, L. D. da Silva\",\"doi\":\"10.1177/09544054231184914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, two advanced sealing methods are proposed to enhance the formability of aluminium alloys in the tube hydroforming process. These methods are aimed at omitting friction force at the contact area between the tube and the die in the feed region and facilitating the material flow to the deformation region. The advanced sealing methods are numerically and experimentally examined against the conventional sealing method by conducting the free bulge test on AA6063 aluminium tubes. The deformation mechanics are deeply analysed in the principal strain space to identify the influence of the sealing methods on deformation paths. In addition, the effectiveness of the advanced sealing methods is evaluated under different lubrication conditions and contact lengths in the feed region. Results show that in the advanced sealing methods compared to the conventional one, the thickness in the feed region does not increase and the necking occurs in larger in-plane strains, leading to a higher bulge height. Results also allow concluding that a higher bulge height is formed using the second advanced sealing method, in which the tube is pressurized from both sides in the feed region. Thus, the advanced sealing methods are recommended for tube hydroforming of aluminium alloys with low formability.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054231184914\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054231184914","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Improvement of material flow in tube hydroforming by advanced sealing methods
In this paper, two advanced sealing methods are proposed to enhance the formability of aluminium alloys in the tube hydroforming process. These methods are aimed at omitting friction force at the contact area between the tube and the die in the feed region and facilitating the material flow to the deformation region. The advanced sealing methods are numerically and experimentally examined against the conventional sealing method by conducting the free bulge test on AA6063 aluminium tubes. The deformation mechanics are deeply analysed in the principal strain space to identify the influence of the sealing methods on deformation paths. In addition, the effectiveness of the advanced sealing methods is evaluated under different lubrication conditions and contact lengths in the feed region. Results show that in the advanced sealing methods compared to the conventional one, the thickness in the feed region does not increase and the necking occurs in larger in-plane strains, leading to a higher bulge height. Results also allow concluding that a higher bulge height is formed using the second advanced sealing method, in which the tube is pressurized from both sides in the feed region. Thus, the advanced sealing methods are recommended for tube hydroforming of aluminium alloys with low formability.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.