显式kummer生成器的环切分扩展

IF 0.2 Q4 MATHEMATICS
F. Hörmann, Antonella Perucca, Pietro Sgobba, S. Tronto
{"title":"显式kummer生成器的环切分扩展","authors":"F. Hörmann, Antonella Perucca, Pietro Sgobba, S. Tronto","doi":"10.17654/0972555522004","DOIUrl":null,"url":null,"abstract":"A BSTRACT . If p is a prime number congruent to 1 modulo 3 , then we explicitly describe an element of the cyclotomic field Q ( ζ 3 ) whose third root generates the cubic subextension of Q ( ζ 3 p ) / Q ( ζ 3 ) . Similarly, if p is a prime number congruent to 1 modulo 4 , then we explicitly describe an element of the cyclotomic field Q ( ζ 4 ) whose fourth root generates the quartic cyclic subextension of Q ( ζ 4 p ) / Q ( ζ 4 ) . For further number fields we express generators of Kummer extensions inside cyclotomic fields in terms of Gauss sums.","PeriodicalId":43248,"journal":{"name":"JP Journal of Algebra Number Theory and Applications","volume":"16 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"EXPLICIT KUMMER GENERATORS FOR CYCLOTOMIC EXTENSIONS\",\"authors\":\"F. Hörmann, Antonella Perucca, Pietro Sgobba, S. Tronto\",\"doi\":\"10.17654/0972555522004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A BSTRACT . If p is a prime number congruent to 1 modulo 3 , then we explicitly describe an element of the cyclotomic field Q ( ζ 3 ) whose third root generates the cubic subextension of Q ( ζ 3 p ) / Q ( ζ 3 ) . Similarly, if p is a prime number congruent to 1 modulo 4 , then we explicitly describe an element of the cyclotomic field Q ( ζ 4 ) whose fourth root generates the quartic cyclic subextension of Q ( ζ 4 p ) / Q ( ζ 4 ) . For further number fields we express generators of Kummer extensions inside cyclotomic fields in terms of Gauss sums.\",\"PeriodicalId\":43248,\"journal\":{\"name\":\"JP Journal of Algebra Number Theory and Applications\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JP Journal of Algebra Number Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0972555522004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JP Journal of Algebra Number Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0972555522004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要。如果p是一个质数,等于1模3,那么我们明确地描述了一个环切场Q (ζ 3)的元素,它的三次根产生了Q (ζ 3p) / Q (ζ 3)的三次扩展。类似地,如果p是一个质数,等于1模4,那么我们明确地描述了一个环切场Q (ζ 4)的元素,它的四次根产生了Q (ζ 4p) / Q (ζ 4)的四次循环子展。对于更多的数域,我们用高斯和表示了环切域内Kummer扩展的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXPLICIT KUMMER GENERATORS FOR CYCLOTOMIC EXTENSIONS
A BSTRACT . If p is a prime number congruent to 1 modulo 3 , then we explicitly describe an element of the cyclotomic field Q ( ζ 3 ) whose third root generates the cubic subextension of Q ( ζ 3 p ) / Q ( ζ 3 ) . Similarly, if p is a prime number congruent to 1 modulo 4 , then we explicitly describe an element of the cyclotomic field Q ( ζ 4 ) whose fourth root generates the quartic cyclic subextension of Q ( ζ 4 p ) / Q ( ζ 4 ) . For further number fields we express generators of Kummer extensions inside cyclotomic fields in terms of Gauss sums.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
32
期刊介绍: The JP Journal of Algebra, Number Theory and Applications is a peer-reviewed international journal. Original research papers theoretical, computational or applied, in nature, in any branch of Algebra and Number Theory are considered by the JPANTA. Together with the core topics in these fields along with their interplay, the journal promotes contributions in Diophantine equations, Representation theory, and Cryptography. Realising the need of wide range of information for any emerging area of potential research, the journal encourages the submission of related survey articles as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信