F. Hörmann, Antonella Perucca, Pietro Sgobba, S. Tronto
{"title":"显式kummer生成器的环切分扩展","authors":"F. Hörmann, Antonella Perucca, Pietro Sgobba, S. Tronto","doi":"10.17654/0972555522004","DOIUrl":null,"url":null,"abstract":"A BSTRACT . If p is a prime number congruent to 1 modulo 3 , then we explicitly describe an element of the cyclotomic field Q ( ζ 3 ) whose third root generates the cubic subextension of Q ( ζ 3 p ) / Q ( ζ 3 ) . Similarly, if p is a prime number congruent to 1 modulo 4 , then we explicitly describe an element of the cyclotomic field Q ( ζ 4 ) whose fourth root generates the quartic cyclic subextension of Q ( ζ 4 p ) / Q ( ζ 4 ) . For further number fields we express generators of Kummer extensions inside cyclotomic fields in terms of Gauss sums.","PeriodicalId":43248,"journal":{"name":"JP Journal of Algebra Number Theory and Applications","volume":"16 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"EXPLICIT KUMMER GENERATORS FOR CYCLOTOMIC EXTENSIONS\",\"authors\":\"F. Hörmann, Antonella Perucca, Pietro Sgobba, S. Tronto\",\"doi\":\"10.17654/0972555522004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A BSTRACT . If p is a prime number congruent to 1 modulo 3 , then we explicitly describe an element of the cyclotomic field Q ( ζ 3 ) whose third root generates the cubic subextension of Q ( ζ 3 p ) / Q ( ζ 3 ) . Similarly, if p is a prime number congruent to 1 modulo 4 , then we explicitly describe an element of the cyclotomic field Q ( ζ 4 ) whose fourth root generates the quartic cyclic subextension of Q ( ζ 4 p ) / Q ( ζ 4 ) . For further number fields we express generators of Kummer extensions inside cyclotomic fields in terms of Gauss sums.\",\"PeriodicalId\":43248,\"journal\":{\"name\":\"JP Journal of Algebra Number Theory and Applications\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JP Journal of Algebra Number Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0972555522004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JP Journal of Algebra Number Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0972555522004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
EXPLICIT KUMMER GENERATORS FOR CYCLOTOMIC EXTENSIONS
A BSTRACT . If p is a prime number congruent to 1 modulo 3 , then we explicitly describe an element of the cyclotomic field Q ( ζ 3 ) whose third root generates the cubic subextension of Q ( ζ 3 p ) / Q ( ζ 3 ) . Similarly, if p is a prime number congruent to 1 modulo 4 , then we explicitly describe an element of the cyclotomic field Q ( ζ 4 ) whose fourth root generates the quartic cyclic subextension of Q ( ζ 4 p ) / Q ( ζ 4 ) . For further number fields we express generators of Kummer extensions inside cyclotomic fields in terms of Gauss sums.
期刊介绍:
The JP Journal of Algebra, Number Theory and Applications is a peer-reviewed international journal. Original research papers theoretical, computational or applied, in nature, in any branch of Algebra and Number Theory are considered by the JPANTA. Together with the core topics in these fields along with their interplay, the journal promotes contributions in Diophantine equations, Representation theory, and Cryptography. Realising the need of wide range of information for any emerging area of potential research, the journal encourages the submission of related survey articles as well.