分布阶分数阶移动-不移动平流-色散方程基于分数阶车里什科夫小波的复合配置方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
H. Marasi, M. Derakhshan
{"title":"分布阶分数阶移动-不移动平流-色散方程基于分数阶车里什科夫小波的复合配置方法","authors":"H. Marasi, M. Derakhshan","doi":"10.3846/mma.2022.15311","DOIUrl":null,"url":null,"abstract":"In this study, an accurate and efficient composite collocation method based on the fractional order Chelyshkov wavelets is proposed for obtaining approximate solution of distributed-order fractional mobile-immobile advection-dispersion equation with initial and boundary conditions. Operational matrices based on the fractional Chelyshkov wavelets are constructed. The proposed method reduce the solution to a system of algebraic equations, which is solved by Newton’s iterative method. Provided examples confirm the accuracy and applicability of the proposed method in line with the studied convergence analysis and error estimation. The obtained results of demonstrated numerical schemes illustrate that this approach is very accurate and efficient.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Composite collocation method based on the fractional Chelyshkov wavelets for Distributed-order fractional Mobile-immobile advection-dispersion equation\",\"authors\":\"H. Marasi, M. Derakhshan\",\"doi\":\"10.3846/mma.2022.15311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an accurate and efficient composite collocation method based on the fractional order Chelyshkov wavelets is proposed for obtaining approximate solution of distributed-order fractional mobile-immobile advection-dispersion equation with initial and boundary conditions. Operational matrices based on the fractional Chelyshkov wavelets are constructed. The proposed method reduce the solution to a system of algebraic equations, which is solved by Newton’s iterative method. Provided examples confirm the accuracy and applicability of the proposed method in line with the studied convergence analysis and error estimation. The obtained results of demonstrated numerical schemes illustrate that this approach is very accurate and efficient.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2022.15311\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2022.15311","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于分数阶Chelyshkov小波的精确高效的复合配置方法,用于求解具有初始条件和边界条件的分布阶分数阶移动-不移动平流-色散方程的近似解。构造了基于分数切里什科夫小波的运算矩阵。该方法将求解简化为一个代数方程组,并采用牛顿迭代法求解。通过研究的收敛性分析和误差估计,实例验证了所提方法的准确性和适用性。仿真结果表明,该方法具有较高的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Composite collocation method based on the fractional Chelyshkov wavelets for Distributed-order fractional Mobile-immobile advection-dispersion equation
In this study, an accurate and efficient composite collocation method based on the fractional order Chelyshkov wavelets is proposed for obtaining approximate solution of distributed-order fractional mobile-immobile advection-dispersion equation with initial and boundary conditions. Operational matrices based on the fractional Chelyshkov wavelets are constructed. The proposed method reduce the solution to a system of algebraic equations, which is solved by Newton’s iterative method. Provided examples confirm the accuracy and applicability of the proposed method in line with the studied convergence analysis and error estimation. The obtained results of demonstrated numerical schemes illustrate that this approach is very accurate and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信