引导代码合成使用深度神经网络

Carol V. Alexandru
{"title":"引导代码合成使用深度神经网络","authors":"Carol V. Alexandru","doi":"10.1145/2950290.2983951","DOIUrl":null,"url":null,"abstract":"Can we teach computers how to program? Recent advances in neural network research reveal that certain neural networks are able not only to learn the syntax, grammar and semantics of arbitrary character sequences, but also synthesize new samples `in the style of' the original training data. We explore the adaptation of these techniques to code classification, comprehension and completion.","PeriodicalId":20532,"journal":{"name":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Guided code synthesis using deep neural networks\",\"authors\":\"Carol V. Alexandru\",\"doi\":\"10.1145/2950290.2983951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Can we teach computers how to program? Recent advances in neural network research reveal that certain neural networks are able not only to learn the syntax, grammar and semantics of arbitrary character sequences, but also synthesize new samples `in the style of' the original training data. We explore the adaptation of these techniques to code classification, comprehension and completion.\",\"PeriodicalId\":20532,\"journal\":{\"name\":\"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2950290.2983951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950290.2983951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们能教计算机如何编程吗?神经网络研究的最新进展表明,某些神经网络不仅能够学习任意字符序列的句法、语法和语义,而且能够“以”原始训练数据的“风格”合成新的样本。我们探讨了这些技术在代码分类、理解和补全方面的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guided code synthesis using deep neural networks
Can we teach computers how to program? Recent advances in neural network research reveal that certain neural networks are able not only to learn the syntax, grammar and semantics of arbitrary character sequences, but also synthesize new samples `in the style of' the original training data. We explore the adaptation of these techniques to code classification, comprehension and completion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信