{"title":"Hilbert空间中随机偏微分方程鞅解的弱唯一性","authors":"V. Mandrekar, U. V. Naik-Nimbalkar","doi":"10.37863/tsp-5986263728-06","DOIUrl":null,"url":null,"abstract":"\nWe prove the uniqueness of martingale solutions for stochastic partial differential equations generalizing the work in Mandrekar and \nSkorokhod (1998). The main idea used is to reduce this problem to the case in Mandrekar and Skorokhod using the techniques introduced in \nFilipović et al. (2010).\n","PeriodicalId":38143,"journal":{"name":"Theory of Stochastic Processes","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak uniqueness of martingale solutions to stochastic partial differential equations in Hilbert spaces\",\"authors\":\"V. Mandrekar, U. V. Naik-Nimbalkar\",\"doi\":\"10.37863/tsp-5986263728-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nWe prove the uniqueness of martingale solutions for stochastic partial differential equations generalizing the work in Mandrekar and \\nSkorokhod (1998). The main idea used is to reduce this problem to the case in Mandrekar and Skorokhod using the techniques introduced in \\nFilipović et al. (2010).\\n\",\"PeriodicalId\":38143,\"journal\":{\"name\":\"Theory of Stochastic Processes\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Stochastic Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37863/tsp-5986263728-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Stochastic Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37863/tsp-5986263728-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
推广了Mandrekar和Skorokhod(1998)的工作,证明了随机偏微分方程鞅解的唯一性。使用的主要思想是使用filipoviki et al.(2010)中介绍的技术将这个问题减少到Mandrekar和Skorokhod的情况。
Weak uniqueness of martingale solutions to stochastic partial differential equations in Hilbert spaces
We prove the uniqueness of martingale solutions for stochastic partial differential equations generalizing the work in Mandrekar and
Skorokhod (1998). The main idea used is to reduce this problem to the case in Mandrekar and Skorokhod using the techniques introduced in
Filipović et al. (2010).