伪爱因斯坦3流形上的泛函行列式

Ali Maalaoui
{"title":"伪爱因斯坦3流形上的泛函行列式","authors":"Ali Maalaoui","doi":"10.2140/PJM.2020.309.421","DOIUrl":null,"url":null,"abstract":"Given a three dimensional pseudo-Einstein CR manifold $(M,T^{1,0}M,\\theta)$, we establish an expression for the difference of determinants of the Paneitz type operators $A_{\\theta}$, related to the problem of prescribing the $Q'$-curvature, under the conformal change $\\theta\\mapsto e^{w}\\theta$ with $w\\in \\P$ the space of pluriharmonic functions. This generalizes the expression of the functional determinant in four dimensional Riemannian manifolds established in \\cite{BO2}. We also provide an existence result of maximizers for the scaling invariant functional determinant as in \\cite{CY}.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional determinant on pseudo-Einstein 3-manifolds\",\"authors\":\"Ali Maalaoui\",\"doi\":\"10.2140/PJM.2020.309.421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a three dimensional pseudo-Einstein CR manifold $(M,T^{1,0}M,\\\\theta)$, we establish an expression for the difference of determinants of the Paneitz type operators $A_{\\\\theta}$, related to the problem of prescribing the $Q'$-curvature, under the conformal change $\\\\theta\\\\mapsto e^{w}\\\\theta$ with $w\\\\in \\\\P$ the space of pluriharmonic functions. This generalizes the expression of the functional determinant in four dimensional Riemannian manifolds established in \\\\cite{BO2}. We also provide an existence result of maximizers for the scaling invariant functional determinant as in \\\\cite{CY}.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/PJM.2020.309.421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/PJM.2020.309.421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定三维伪爱因斯坦CR流形$(M,T^{1,0}M,\theta)$,我们建立了Paneitz型算子$A_{\theta}$的行列式之差的表达式,该表达式与$w\in \P$多谐函数空间在保角变化$\theta\mapsto e^{w}\theta$下规定$Q'$ -曲率的问题有关。这推广了在\cite{BO2}中建立的四维黎曼流形中的泛函行列式的表达式。我们还提供了缩放不变函数行列式的最大值的存在性结果,见\cite{CY}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional determinant on pseudo-Einstein 3-manifolds
Given a three dimensional pseudo-Einstein CR manifold $(M,T^{1,0}M,\theta)$, we establish an expression for the difference of determinants of the Paneitz type operators $A_{\theta}$, related to the problem of prescribing the $Q'$-curvature, under the conformal change $\theta\mapsto e^{w}\theta$ with $w\in \P$ the space of pluriharmonic functions. This generalizes the expression of the functional determinant in four dimensional Riemannian manifolds established in \cite{BO2}. We also provide an existence result of maximizers for the scaling invariant functional determinant as in \cite{CY}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信