有限粒子数量的空间生与死过程

IF 0.7 Q3 STATISTICS & PROBABILITY
V. Bezborodov, L. Di Persio
{"title":"有限粒子数量的空间生与死过程","authors":"V. Bezborodov, L. Di Persio","doi":"10.15559/22-VMSTA203","DOIUrl":null,"url":null,"abstract":"The aim of this work is to establish essential properties of spatial birth-and-death processes with general birth and death rates on ${\\mathbb{R}^{\\mathrm{d}}}$. Spatial birth-and-death processes with time dependent rates are obtained as solutions to certain stochastic equations. The existence, uniqueness, uniqueness in law and the strong Markov property of unique solutions are proven when the integral of the birth rate over ${\\mathbb{R}^{\\mathrm{d}}}$ grows not faster than linearly with the number of particles of the system. Martingale properties of the constructed process provide a rigorous connection to the heuristic generator.\nThe pathwise behavior of an aggregation model is also studied. The probability of extinction and the growth rate of the number of particles under condition of nonextinction are estimated.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2015-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial birth-and-death processes with a finite number of particles\",\"authors\":\"V. Bezborodov, L. Di Persio\",\"doi\":\"10.15559/22-VMSTA203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to establish essential properties of spatial birth-and-death processes with general birth and death rates on ${\\\\mathbb{R}^{\\\\mathrm{d}}}$. Spatial birth-and-death processes with time dependent rates are obtained as solutions to certain stochastic equations. The existence, uniqueness, uniqueness in law and the strong Markov property of unique solutions are proven when the integral of the birth rate over ${\\\\mathbb{R}^{\\\\mathrm{d}}}$ grows not faster than linearly with the number of particles of the system. Martingale properties of the constructed process provide a rigorous connection to the heuristic generator.\\nThe pathwise behavior of an aggregation model is also studied. The probability of extinction and the growth rate of the number of particles under condition of nonextinction are estimated.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2015-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/22-VMSTA203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/22-VMSTA203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是在${\mathbb{R}^{\ mathm {d}}}$上建立具有一般出生率和死亡率的空间生死过程的基本性质。得到了具有时间依赖速率的空间生灭过程,作为一类随机方程的解。当出生率在${\mathbb{R}^{\ mathm {d}} $上的积分随系统粒子数的增长不大于线性增长时,证明了唯一解的存在性、唯一性、律唯一性和强马尔可夫性。构造过程的鞅属性为启发式生成器提供了严格的连接。研究了聚合模型的路径行为。估计了非消光条件下粒子的消光概率和粒子数的增长率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial birth-and-death processes with a finite number of particles
The aim of this work is to establish essential properties of spatial birth-and-death processes with general birth and death rates on ${\mathbb{R}^{\mathrm{d}}}$. Spatial birth-and-death processes with time dependent rates are obtained as solutions to certain stochastic equations. The existence, uniqueness, uniqueness in law and the strong Markov property of unique solutions are proven when the integral of the birth rate over ${\mathbb{R}^{\mathrm{d}}}$ grows not faster than linearly with the number of particles of the system. Martingale properties of the constructed process provide a rigorous connection to the heuristic generator. The pathwise behavior of an aggregation model is also studied. The probability of extinction and the growth rate of the number of particles under condition of nonextinction are estimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信