有限试用Chase解码

G. Arico, J. Weber
{"title":"有限试用Chase解码","authors":"G. Arico, J. Weber","doi":"10.1109/TIT.2003.818397","DOIUrl":null,"url":null,"abstract":"Chase decoders permit flexible use of reliability information in algebraic decoding algorithms for error-correcting block codes of Hamming distance d. The least complex version of the original Chase algorithms uses roughly d/2 trials of a conventional binary decoder, after which the best decoding result is selected as the final output. On certain channels, this approach achieves asymptotically the same performance as maximum-likelihood (ML) decoding. In this correspondence, the performance of Chase-like decoders with even less trials is studied. Most strikingly, it turns out that asymptotically optimal performance can be achieved by a version which uses only about d/4 trials.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"42 9 1","pages":"2972-2975"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Limited-trial Chase decoding\",\"authors\":\"G. Arico, J. Weber\",\"doi\":\"10.1109/TIT.2003.818397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chase decoders permit flexible use of reliability information in algebraic decoding algorithms for error-correcting block codes of Hamming distance d. The least complex version of the original Chase algorithms uses roughly d/2 trials of a conventional binary decoder, after which the best decoding result is selected as the final output. On certain channels, this approach achieves asymptotically the same performance as maximum-likelihood (ML) decoding. In this correspondence, the performance of Chase-like decoders with even less trials is studied. Most strikingly, it turns out that asymptotically optimal performance can be achieved by a version which uses only about d/4 trials.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"42 9 1\",\"pages\":\"2972-2975\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIT.2003.818397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.818397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

Chase解码器允许在汉明距离d的纠错分组码的代数解码算法中灵活地使用可靠性信息。原始Chase算法的最简单版本对传统二进制解码器进行大约d/2次试验,之后选择最佳解码结果作为最终输出。在某些信道上,这种方法可以获得与最大似然(ML)解码相同的性能。在这种通信中,研究了更少试验的类追逐解码器的性能。最引人注目的是,事实证明,一个只使用大约d/4次试验的版本可以实现渐近最优性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limited-trial Chase decoding
Chase decoders permit flexible use of reliability information in algebraic decoding algorithms for error-correcting block codes of Hamming distance d. The least complex version of the original Chase algorithms uses roughly d/2 trials of a conventional binary decoder, after which the best decoding result is selected as the final output. On certain channels, this approach achieves asymptotically the same performance as maximum-likelihood (ML) decoding. In this correspondence, the performance of Chase-like decoders with even less trials is studied. Most strikingly, it turns out that asymptotically optimal performance can be achieved by a version which uses only about d/4 trials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信