{"title":"扩散- klms算法","authors":"R. Mitra, V. Bhatia","doi":"10.1109/ICIT.2014.33","DOIUrl":null,"url":null,"abstract":"The diffusion least mean squares (LMS) [1] algorithm gives faster convergence than the original LMS in a distributed network. Also, it outperforms other distributed LMS algorithms like spatial LMS and incremental LMS [2]. However, both LMS and diffusion-LMS are not applicable in non-linear environments where data may not be linearly separable [3]. A variant of LMS called kernel-LMS (KLMS) has been proposed in [3] for such non-linearities. We intend to propose the kernelised version of diffusion-LMS in this paper.","PeriodicalId":6486,"journal":{"name":"2014 17th International Conference on Computer and Information Technology (ICCIT)","volume":"96 1","pages":"256-259"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"The Diffusion-KLMS Algorithm\",\"authors\":\"R. Mitra, V. Bhatia\",\"doi\":\"10.1109/ICIT.2014.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diffusion least mean squares (LMS) [1] algorithm gives faster convergence than the original LMS in a distributed network. Also, it outperforms other distributed LMS algorithms like spatial LMS and incremental LMS [2]. However, both LMS and diffusion-LMS are not applicable in non-linear environments where data may not be linearly separable [3]. A variant of LMS called kernel-LMS (KLMS) has been proposed in [3] for such non-linearities. We intend to propose the kernelised version of diffusion-LMS in this paper.\",\"PeriodicalId\":6486,\"journal\":{\"name\":\"2014 17th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"96 1\",\"pages\":\"256-259\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 17th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2014.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 17th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The diffusion least mean squares (LMS) [1] algorithm gives faster convergence than the original LMS in a distributed network. Also, it outperforms other distributed LMS algorithms like spatial LMS and incremental LMS [2]. However, both LMS and diffusion-LMS are not applicable in non-linear environments where data may not be linearly separable [3]. A variant of LMS called kernel-LMS (KLMS) has been proposed in [3] for such non-linearities. We intend to propose the kernelised version of diffusion-LMS in this paper.