{"title":"利用天然废物生产生物表面活性剂(BS)和生物乳化剂(BE)及其应用综述","authors":"Mujumdar Shilpa","doi":"10.23880/oajmb-16000203","DOIUrl":null,"url":null,"abstract":"Commercial biosurfactant (BS) or bioemulsifier (BE) production requires high manufacturing cost and result difficulties in downstream processing and purification. This problem can be resolved by using low- cost natural substrates. Agro- industrial wastes as well as non-edible portions of fruits, vegetables, fish and meat contributes in high disposal and loss of nutritional biomass from the environment. These are readily available wastes which have tremendous potential to be reused as a substrate by microorganisms for efficient BS or BE production. Fruits, vegetables, fish, dairy and brewery wastes are rich sources of valuable nutrients which includes carbon, nitrogen, vitamins and other minerals. BS or BE produced using these substrates are stable in environment and show potential applications in many sectors of food industry, oil industry, agriculture, bioremediation, medicine and pharmaceutical industry. Yield of biosurfactant or bioemulsifier production can be increased by optimizing certain media parameters with the natural substrate concentrations. Growth parameters such as pH, temperature, salinity, carbon and nitrogen content have effect on stability of microorganism for maximum biosurfactant or bioemulsifier production. This review describes some recent developments and applications for the commercial biosurfactant or bioemulsifier production using cheap and unconventional natural wastes.","PeriodicalId":19559,"journal":{"name":"Open Access Journal of Microbiology & Biotechnology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Natural Wastes for Biosurfactant (BS) and Bioemulsifier (BE) Production and their Applications – A Review\",\"authors\":\"Mujumdar Shilpa\",\"doi\":\"10.23880/oajmb-16000203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercial biosurfactant (BS) or bioemulsifier (BE) production requires high manufacturing cost and result difficulties in downstream processing and purification. This problem can be resolved by using low- cost natural substrates. Agro- industrial wastes as well as non-edible portions of fruits, vegetables, fish and meat contributes in high disposal and loss of nutritional biomass from the environment. These are readily available wastes which have tremendous potential to be reused as a substrate by microorganisms for efficient BS or BE production. Fruits, vegetables, fish, dairy and brewery wastes are rich sources of valuable nutrients which includes carbon, nitrogen, vitamins and other minerals. BS or BE produced using these substrates are stable in environment and show potential applications in many sectors of food industry, oil industry, agriculture, bioremediation, medicine and pharmaceutical industry. Yield of biosurfactant or bioemulsifier production can be increased by optimizing certain media parameters with the natural substrate concentrations. Growth parameters such as pH, temperature, salinity, carbon and nitrogen content have effect on stability of microorganism for maximum biosurfactant or bioemulsifier production. This review describes some recent developments and applications for the commercial biosurfactant or bioemulsifier production using cheap and unconventional natural wastes.\",\"PeriodicalId\":19559,\"journal\":{\"name\":\"Open Access Journal of Microbiology & Biotechnology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Access Journal of Microbiology & Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23880/oajmb-16000203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Access Journal of Microbiology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/oajmb-16000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of Natural Wastes for Biosurfactant (BS) and Bioemulsifier (BE) Production and their Applications – A Review
Commercial biosurfactant (BS) or bioemulsifier (BE) production requires high manufacturing cost and result difficulties in downstream processing and purification. This problem can be resolved by using low- cost natural substrates. Agro- industrial wastes as well as non-edible portions of fruits, vegetables, fish and meat contributes in high disposal and loss of nutritional biomass from the environment. These are readily available wastes which have tremendous potential to be reused as a substrate by microorganisms for efficient BS or BE production. Fruits, vegetables, fish, dairy and brewery wastes are rich sources of valuable nutrients which includes carbon, nitrogen, vitamins and other minerals. BS or BE produced using these substrates are stable in environment and show potential applications in many sectors of food industry, oil industry, agriculture, bioremediation, medicine and pharmaceutical industry. Yield of biosurfactant or bioemulsifier production can be increased by optimizing certain media parameters with the natural substrate concentrations. Growth parameters such as pH, temperature, salinity, carbon and nitrogen content have effect on stability of microorganism for maximum biosurfactant or bioemulsifier production. This review describes some recent developments and applications for the commercial biosurfactant or bioemulsifier production using cheap and unconventional natural wastes.