识别针对电网的“不可观察”网络数据攻击

Meng Wang, Pengzhi Gao, Scott G. Ghiocel, J. Chow, B. Fardanesh, G. Stefopoulos, Michael P. Razanousky
{"title":"识别针对电网的“不可观察”网络数据攻击","authors":"Meng Wang, Pengzhi Gao, Scott G. Ghiocel, J. Chow, B. Fardanesh, G. Stefopoulos, Michael P. Razanousky","doi":"10.1109/SmartGridComm.2014.7007751","DOIUrl":null,"url":null,"abstract":"This paper presents a new framework of identifying cyber data attacks on synchrophasor measurements. We focus on detecting “unobservable” cyber data attacks that cannot be detected by any existing detection method that purely relies on measurements received at one time instant. Leveraging the approximate low-rank property of phasor measurement unit (PMU) data, we formulate the unobservable cyber attack identification problem as a matrix decomposition problem where the observed data matrix is the sum of a low-rank matrix plus a linear projection of a column-sparse matrix. We propose a convex-optimization-based decomposition method and provide its theoretical guarantee in the attack identification. Numerical experiments on actual PMU data and synthetic data are conducted to verify the effectiveness of the proposed method.","PeriodicalId":6499,"journal":{"name":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"11 1","pages":"830-835"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Identification of “unobservable” cyber data attacks on power grids\",\"authors\":\"Meng Wang, Pengzhi Gao, Scott G. Ghiocel, J. Chow, B. Fardanesh, G. Stefopoulos, Michael P. Razanousky\",\"doi\":\"10.1109/SmartGridComm.2014.7007751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new framework of identifying cyber data attacks on synchrophasor measurements. We focus on detecting “unobservable” cyber data attacks that cannot be detected by any existing detection method that purely relies on measurements received at one time instant. Leveraging the approximate low-rank property of phasor measurement unit (PMU) data, we formulate the unobservable cyber attack identification problem as a matrix decomposition problem where the observed data matrix is the sum of a low-rank matrix plus a linear projection of a column-sparse matrix. We propose a convex-optimization-based decomposition method and provide its theoretical guarantee in the attack identification. Numerical experiments on actual PMU data and synthetic data are conducted to verify the effectiveness of the proposed method.\",\"PeriodicalId\":6499,\"journal\":{\"name\":\"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":\"11 1\",\"pages\":\"830-835\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2014.7007751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2014.7007751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种识别同步量测量网络数据攻击的新框架。我们专注于检测“不可观察”的网络数据攻击,这些攻击无法被任何现有的检测方法检测到,这些检测方法纯粹依赖于一次性接收到的测量数据。利用相量测量单元(PMU)数据的近似低秩特性,我们将不可观测网络攻击识别问题表述为矩阵分解问题,其中观察到的数据矩阵是低秩矩阵加上列稀疏矩阵的线性投影的和。提出了一种基于凸优化的分解方法,并为其在攻击识别中提供了理论保证。在PMU实际数据和综合数据上进行了数值实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of “unobservable” cyber data attacks on power grids
This paper presents a new framework of identifying cyber data attacks on synchrophasor measurements. We focus on detecting “unobservable” cyber data attacks that cannot be detected by any existing detection method that purely relies on measurements received at one time instant. Leveraging the approximate low-rank property of phasor measurement unit (PMU) data, we formulate the unobservable cyber attack identification problem as a matrix decomposition problem where the observed data matrix is the sum of a low-rank matrix plus a linear projection of a column-sparse matrix. We propose a convex-optimization-based decomposition method and provide its theoretical guarantee in the attack identification. Numerical experiments on actual PMU data and synthetic data are conducted to verify the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信