Prabha Ranasinghe, Christopher I. Olivares, W. Champion, Cindy M Lee
{"title":"HPLC法分离PCB-95的atrosom异构","authors":"Prabha Ranasinghe, Christopher I. Olivares, W. Champion, Cindy M Lee","doi":"10.11648/J.SJC.20190702.12","DOIUrl":null,"url":null,"abstract":"2,2’,3,5’,6-Pentachlorobiphenyl (PCB-95) is an environmentally significant chiral PCB, of which enantioselective toxicity, biodegradation and chiral stability studies have been limited to date, as no commercially available enantiomers exist for PCB-95 and due to the lack of an efficient preparatory chiral separation method. A selective, sensitive, and rapid high-performance liquid chromatography with UV detection (HPLC-UV) method has been developed and validated for the chromatographic separation and quantitation of PCB-95 enantiomers. In this study, we resolved enantiomers of PCB-95 using a cellulose tris (4-methylbenzoate) Chiralcel OJ- H column. After evaluating mobile phase compositions and temperatures, optimum separation and detection were obtained with isocratic 100% n-hexane as the mobile phase, a column temperature of 20°C, a flow rate of 1 mL/min, and a detection wavelength of 280 nm. The total run time was 8 minutes. Enantiomer purity was confirmed using enantioselective gas capillary chromatography-electron capture detection. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to limit of detection, limit of quantification, precision, linearity, robustness and ruggedness.","PeriodicalId":21607,"journal":{"name":"Science Journal of Chemistry","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Atropisomeric Separation of PCB-95 by HPLC\",\"authors\":\"Prabha Ranasinghe, Christopher I. Olivares, W. Champion, Cindy M Lee\",\"doi\":\"10.11648/J.SJC.20190702.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2,2’,3,5’,6-Pentachlorobiphenyl (PCB-95) is an environmentally significant chiral PCB, of which enantioselective toxicity, biodegradation and chiral stability studies have been limited to date, as no commercially available enantiomers exist for PCB-95 and due to the lack of an efficient preparatory chiral separation method. A selective, sensitive, and rapid high-performance liquid chromatography with UV detection (HPLC-UV) method has been developed and validated for the chromatographic separation and quantitation of PCB-95 enantiomers. In this study, we resolved enantiomers of PCB-95 using a cellulose tris (4-methylbenzoate) Chiralcel OJ- H column. After evaluating mobile phase compositions and temperatures, optimum separation and detection were obtained with isocratic 100% n-hexane as the mobile phase, a column temperature of 20°C, a flow rate of 1 mL/min, and a detection wavelength of 280 nm. The total run time was 8 minutes. Enantiomer purity was confirmed using enantioselective gas capillary chromatography-electron capture detection. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to limit of detection, limit of quantification, precision, linearity, robustness and ruggedness.\",\"PeriodicalId\":21607,\"journal\":{\"name\":\"Science Journal of Chemistry\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.SJC.20190702.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJC.20190702.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2,2’,3,5’,6-Pentachlorobiphenyl (PCB-95) is an environmentally significant chiral PCB, of which enantioselective toxicity, biodegradation and chiral stability studies have been limited to date, as no commercially available enantiomers exist for PCB-95 and due to the lack of an efficient preparatory chiral separation method. A selective, sensitive, and rapid high-performance liquid chromatography with UV detection (HPLC-UV) method has been developed and validated for the chromatographic separation and quantitation of PCB-95 enantiomers. In this study, we resolved enantiomers of PCB-95 using a cellulose tris (4-methylbenzoate) Chiralcel OJ- H column. After evaluating mobile phase compositions and temperatures, optimum separation and detection were obtained with isocratic 100% n-hexane as the mobile phase, a column temperature of 20°C, a flow rate of 1 mL/min, and a detection wavelength of 280 nm. The total run time was 8 minutes. Enantiomer purity was confirmed using enantioselective gas capillary chromatography-electron capture detection. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to limit of detection, limit of quantification, precision, linearity, robustness and ruggedness.