基于深度迁移学习的混凝土结构图像裂缝识别

Amena Qadri Syed, J. Jothi, K. Anusree
{"title":"基于深度迁移学习的混凝土结构图像裂缝识别","authors":"Amena Qadri Syed, J. Jothi, K. Anusree","doi":"10.1109/AISP53593.2022.9760670","DOIUrl":null,"url":null,"abstract":"Early crack identification of civil structures is an essential task to prolong the life of the structures and to promise public safety. This research aims to develop an automated crack identification system using deep learning models and the SDNET2018 dataset. Image augmentation is applied to overcome the effect of unbalanced data. Deep pre-trained models like VGG16, InceptionV3, ResNet-50, ResNet-101 and ResNet-152 are trained and tested using the cracked and uncracked images of decks and pavements from the dataset. The experimental results show that the classification models obtained using transfer learning on the cracked and non-cracked pavement and deck image dataset have accuracy values of 70.59%, 60.31%71.93%, 75.40%, and 74.77% for VGG-16, Inception V3, ResNet-50, ResNet-101, and Resnet-152 pretrained models respectively.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"7 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crack identification from concrete structure images using deep transfer learning\",\"authors\":\"Amena Qadri Syed, J. Jothi, K. Anusree\",\"doi\":\"10.1109/AISP53593.2022.9760670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early crack identification of civil structures is an essential task to prolong the life of the structures and to promise public safety. This research aims to develop an automated crack identification system using deep learning models and the SDNET2018 dataset. Image augmentation is applied to overcome the effect of unbalanced data. Deep pre-trained models like VGG16, InceptionV3, ResNet-50, ResNet-101 and ResNet-152 are trained and tested using the cracked and uncracked images of decks and pavements from the dataset. The experimental results show that the classification models obtained using transfer learning on the cracked and non-cracked pavement and deck image dataset have accuracy values of 70.59%, 60.31%71.93%, 75.40%, and 74.77% for VGG-16, Inception V3, ResNet-50, ResNet-101, and Resnet-152 pretrained models respectively.\",\"PeriodicalId\":6793,\"journal\":{\"name\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"volume\":\"7 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP53593.2022.9760670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土木结构的早期裂缝识别是延长结构使用寿命和保证公共安全的重要任务。本研究旨在利用深度学习模型和SDNET2018数据集开发一个自动裂缝识别系统。采用图像增强技术克服数据不平衡的影响。深度预训练模型,如VGG16, InceptionV3, ResNet-50, ResNet-101和ResNet-152,使用数据集中的甲板和路面的破碎和未破碎图像进行训练和测试。实验结果表明,VGG-16、Inception V3、ResNet-50、ResNet-101和Resnet-152预训练模型在裂缝和非裂缝路面和甲板图像数据集上使用迁移学习获得的分类模型准确率分别为70.59%、60.31%、71.93%、75.40%和74.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crack identification from concrete structure images using deep transfer learning
Early crack identification of civil structures is an essential task to prolong the life of the structures and to promise public safety. This research aims to develop an automated crack identification system using deep learning models and the SDNET2018 dataset. Image augmentation is applied to overcome the effect of unbalanced data. Deep pre-trained models like VGG16, InceptionV3, ResNet-50, ResNet-101 and ResNet-152 are trained and tested using the cracked and uncracked images of decks and pavements from the dataset. The experimental results show that the classification models obtained using transfer learning on the cracked and non-cracked pavement and deck image dataset have accuracy values of 70.59%, 60.31%71.93%, 75.40%, and 74.77% for VGG-16, Inception V3, ResNet-50, ResNet-101, and Resnet-152 pretrained models respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信