太阳齿轮左右齿间具有扭转柔度的人字行星齿轮系统动力学特性研究

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL
X. Xu, Hongwei Ge, Jijun Deng, Jibo Wang, Renxiang Chen
{"title":"太阳齿轮左右齿间具有扭转柔度的人字行星齿轮系统动力学特性研究","authors":"X. Xu, Hongwei Ge, Jijun Deng, Jibo Wang, Renxiang Chen","doi":"10.1051/meca/2020074","DOIUrl":null,"url":null,"abstract":"Herringbone planetary gear system (HPGS) has high power density and complex structure. The torsional flexibility of the left and right teeth of the sun gear is closely related to the dynamic characteristics of the HPGS. In this research, considering the coordination conditions of both sides torsional stiffness and axial slide of the sun gear, a new dynamic model of the HPGS considering the meshing phase difference between left and right teeth of the sun gear is developed based on the lumped-parameter method, and the influence mechanism of torsional stiffness and axial sliding is studied. Moreover, the dynamic parameters and dynamic characteristics of the HPGS are analyzed in the case of varying torsoinal stiffness and axial slide. The results show that the torsional stiffness of left and right teeth and the axial slide of sun gear have significant impacts on the dynamic parameters and dynamic mesh force response. With the increase of the torsional flexibility (the decrease the torsional stiffness), the sun gear and planet gear meshing stiffness and the maximum tooth surface load are both increased on the left side (input side) and decreased on the right side, but the main peak values and peak frequencies of dynamic response on both sides of the s-p meshing pairs decrease significantly. In addition, when the sun gear slides toward the output side axially, meshing stiffness and dynamic mesh force response main peak values decreased on the left side (input side) and increased on the right side, but the main resonance peaks frequencies keep the same.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An investigation on dynamic characteristics of herringbone planetary gear system with torsional flexibility between the left and right teeth of the sun gear\",\"authors\":\"X. Xu, Hongwei Ge, Jijun Deng, Jibo Wang, Renxiang Chen\",\"doi\":\"10.1051/meca/2020074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herringbone planetary gear system (HPGS) has high power density and complex structure. The torsional flexibility of the left and right teeth of the sun gear is closely related to the dynamic characteristics of the HPGS. In this research, considering the coordination conditions of both sides torsional stiffness and axial slide of the sun gear, a new dynamic model of the HPGS considering the meshing phase difference between left and right teeth of the sun gear is developed based on the lumped-parameter method, and the influence mechanism of torsional stiffness and axial sliding is studied. Moreover, the dynamic parameters and dynamic characteristics of the HPGS are analyzed in the case of varying torsoinal stiffness and axial slide. The results show that the torsional stiffness of left and right teeth and the axial slide of sun gear have significant impacts on the dynamic parameters and dynamic mesh force response. With the increase of the torsional flexibility (the decrease the torsional stiffness), the sun gear and planet gear meshing stiffness and the maximum tooth surface load are both increased on the left side (input side) and decreased on the right side, but the main peak values and peak frequencies of dynamic response on both sides of the s-p meshing pairs decrease significantly. In addition, when the sun gear slides toward the output side axially, meshing stiffness and dynamic mesh force response main peak values decreased on the left side (input side) and increased on the right side, but the main resonance peaks frequencies keep the same.\",\"PeriodicalId\":49018,\"journal\":{\"name\":\"Mechanics & Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics & Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1051/meca/2020074\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2020074","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

人字行星齿轮系统具有功率密度高、结构复杂的特点。太阳齿轮左右齿的扭转柔度与齿轮的动态特性密切相关。本研究考虑太阳齿轮两侧扭转刚度和轴向滑动的协调条件,基于集总参数法建立了考虑太阳齿轮左右齿啮合相位差的齿轮传动系统动力学模型,并研究了扭转刚度和轴向滑动的影响机理。此外,还分析了不同体刚度和轴向滑动情况下HPGS的动力参数和动力特性。结果表明,左右齿的扭转刚度和太阳齿轮的轴向滑动对动态参数和动啮合力响应有显著影响。随着扭转柔度的增大(扭转刚度的减小),太阳齿轮和行星齿轮的啮合刚度和最大齿面载荷均在左侧(输入侧)增大,在右侧(输入侧)减小,但s-p啮合副两侧动态响应的主峰值和峰值频率均显著减小。此外,当太阳齿轮轴向输出侧滑动时,啮合刚度和动啮合力响应主峰值在左侧(输入侧)减小,在右侧增大,但主共振峰值频率保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An investigation on dynamic characteristics of herringbone planetary gear system with torsional flexibility between the left and right teeth of the sun gear
Herringbone planetary gear system (HPGS) has high power density and complex structure. The torsional flexibility of the left and right teeth of the sun gear is closely related to the dynamic characteristics of the HPGS. In this research, considering the coordination conditions of both sides torsional stiffness and axial slide of the sun gear, a new dynamic model of the HPGS considering the meshing phase difference between left and right teeth of the sun gear is developed based on the lumped-parameter method, and the influence mechanism of torsional stiffness and axial sliding is studied. Moreover, the dynamic parameters and dynamic characteristics of the HPGS are analyzed in the case of varying torsoinal stiffness and axial slide. The results show that the torsional stiffness of left and right teeth and the axial slide of sun gear have significant impacts on the dynamic parameters and dynamic mesh force response. With the increase of the torsional flexibility (the decrease the torsional stiffness), the sun gear and planet gear meshing stiffness and the maximum tooth surface load are both increased on the left side (input side) and decreased on the right side, but the main peak values and peak frequencies of dynamic response on both sides of the s-p meshing pairs decrease significantly. In addition, when the sun gear slides toward the output side axially, meshing stiffness and dynamic mesh force response main peak values decreased on the left side (input side) and increased on the right side, but the main resonance peaks frequencies keep the same.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics & Industry
Mechanics & Industry ENGINEERING, MECHANICAL-MECHANICS
CiteScore
2.80
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: An International Journal on Mechanical Sciences and Engineering Applications With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities. Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信