摩尔空间同伦群中的无限高扭转族

IF 0.6 3区 数学 Q3 MATHEMATICS
Steven Amelotte, F. Cohen, Y. Luo
{"title":"摩尔空间同伦群中的无限高扭转族","authors":"Steven Amelotte, F. Cohen, Y. Luo","doi":"10.2140/agt.2023.23.2389","DOIUrl":null,"url":null,"abstract":"We give a refinement of the stable Snaith splitting of the double loop space of a Moore space and use it to construct infinite $v_1$-periodic families of elements of order $p^{r+1}$ in the homotopy groups of mod $p^r$ Moore spaces. For odd primes $p$, our splitting implies that the homotopy groups of the mod $p^{r+1}$ Moore spectrum are summands of the unstable homotopy groups of each mod $p^r$ Moore space.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"87 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite families of higher torsion in the homotopy groups of Moore spaces\",\"authors\":\"Steven Amelotte, F. Cohen, Y. Luo\",\"doi\":\"10.2140/agt.2023.23.2389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a refinement of the stable Snaith splitting of the double loop space of a Moore space and use it to construct infinite $v_1$-periodic families of elements of order $p^{r+1}$ in the homotopy groups of mod $p^r$ Moore spaces. For odd primes $p$, our splitting implies that the homotopy groups of the mod $p^{r+1}$ Moore spectrum are summands of the unstable homotopy groups of each mod $p^r$ Moore space.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2023.23.2389\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2389","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了摩尔空间的双环空间的稳定snith分裂的一个改进,并利用它构造了mod $p^r$摩尔空间的同伦群中$p^{r+1}$阶元素的无限$v_1$周期族。对于奇素数$p$,我们的分裂意味着mod $p^{r+1}$摩尔谱的同伦群是每个mod $p^r$摩尔空间的不稳定同伦群的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite families of higher torsion in the homotopy groups of Moore spaces
We give a refinement of the stable Snaith splitting of the double loop space of a Moore space and use it to construct infinite $v_1$-periodic families of elements of order $p^{r+1}$ in the homotopy groups of mod $p^r$ Moore spaces. For odd primes $p$, our splitting implies that the homotopy groups of the mod $p^{r+1}$ Moore spectrum are summands of the unstable homotopy groups of each mod $p^r$ Moore space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信