{"title":"一类一般二次耦合光力学系统的高阶压缩","authors":"K. Mukherjee, P. Jana","doi":"10.9790/4861-0901019095","DOIUrl":null,"url":null,"abstract":"Using short-time dynamics and analytical solution of Heisenberg equation of motion for the Hamiltonian of quadratically-coupled optomechanical system for different field modes, we have investigated the existence of higher-order single mode squeezing, sum squeezing and difference squeezing in absence of driving and dissipation. Depth of squeezing increases with order number for higher-order single mode squeezing. Squeezing factor exhibits a series of revival-collapse phenomena for single mode, which becomes more pronounced as order number increases. In case of sum squeezing amounts of squeezing is greater than single mode higher-order squeezing (n = 2). It is also greater than from difference squeezing for same set of interaction parameters. Sum squeezing is prominently better for extracting information regarding squeezing.","PeriodicalId":14502,"journal":{"name":"IOSR Journal of Applied Physics","volume":"42 1","pages":"90-95"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Higher-Order Squeezing of a Generic Quadratically-Coupled Optomechanical System\",\"authors\":\"K. Mukherjee, P. Jana\",\"doi\":\"10.9790/4861-0901019095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using short-time dynamics and analytical solution of Heisenberg equation of motion for the Hamiltonian of quadratically-coupled optomechanical system for different field modes, we have investigated the existence of higher-order single mode squeezing, sum squeezing and difference squeezing in absence of driving and dissipation. Depth of squeezing increases with order number for higher-order single mode squeezing. Squeezing factor exhibits a series of revival-collapse phenomena for single mode, which becomes more pronounced as order number increases. In case of sum squeezing amounts of squeezing is greater than single mode higher-order squeezing (n = 2). It is also greater than from difference squeezing for same set of interaction parameters. Sum squeezing is prominently better for extracting information regarding squeezing.\",\"PeriodicalId\":14502,\"journal\":{\"name\":\"IOSR Journal of Applied Physics\",\"volume\":\"42 1\",\"pages\":\"90-95\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOSR Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9790/4861-0901019095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOSR Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9790/4861-0901019095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Higher-Order Squeezing of a Generic Quadratically-Coupled Optomechanical System
Using short-time dynamics and analytical solution of Heisenberg equation of motion for the Hamiltonian of quadratically-coupled optomechanical system for different field modes, we have investigated the existence of higher-order single mode squeezing, sum squeezing and difference squeezing in absence of driving and dissipation. Depth of squeezing increases with order number for higher-order single mode squeezing. Squeezing factor exhibits a series of revival-collapse phenomena for single mode, which becomes more pronounced as order number increases. In case of sum squeezing amounts of squeezing is greater than single mode higher-order squeezing (n = 2). It is also greater than from difference squeezing for same set of interaction parameters. Sum squeezing is prominently better for extracting information regarding squeezing.