Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin-ya Katsumata, Ikram Cherigui
{"title":"度量保持的语义解释","authors":"Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin-ya Katsumata, Ikram Cherigui","doi":"10.1145/3009837.3009890","DOIUrl":null,"url":null,"abstract":"Program sensitivity measures how robust a program is to small changes in its input, and is a fundamental notion in domains ranging from differential privacy to cyber-physical systems. A natural way to formalize program sensitivity is in terms of metrics on the input and output spaces, requiring that an r-sensitive function map inputs that are at distance d to outputs that are at distance at most r · d. Program sensitivity is thus an analogue of Lipschitz continuity for programs. Reed and Pierce introduced Fuzz, a functional language with a linear type system that can express program sensitivity. They show soundness operationally, in the form of a metric preservation property. Inspired by their work, we study program sensitivity and metric preservation from a denotational point of view. In particular, we introduce metric CPOs, a novel semantic structure for reasoning about computation on metric spaces, by endowing CPOs with a compatible notion of distance. This structure is useful for reasoning about metric properties of programs, and specifically about program sensitivity. We demonstrate metric CPOs by giving a model for the deterministic fragment of Fuzz.","PeriodicalId":20657,"journal":{"name":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"A semantic account of metric preservation\",\"authors\":\"Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin-ya Katsumata, Ikram Cherigui\",\"doi\":\"10.1145/3009837.3009890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Program sensitivity measures how robust a program is to small changes in its input, and is a fundamental notion in domains ranging from differential privacy to cyber-physical systems. A natural way to formalize program sensitivity is in terms of metrics on the input and output spaces, requiring that an r-sensitive function map inputs that are at distance d to outputs that are at distance at most r · d. Program sensitivity is thus an analogue of Lipschitz continuity for programs. Reed and Pierce introduced Fuzz, a functional language with a linear type system that can express program sensitivity. They show soundness operationally, in the form of a metric preservation property. Inspired by their work, we study program sensitivity and metric preservation from a denotational point of view. In particular, we introduce metric CPOs, a novel semantic structure for reasoning about computation on metric spaces, by endowing CPOs with a compatible notion of distance. This structure is useful for reasoning about metric properties of programs, and specifically about program sensitivity. We demonstrate metric CPOs by giving a model for the deterministic fragment of Fuzz.\",\"PeriodicalId\":20657,\"journal\":{\"name\":\"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009837.3009890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009837.3009890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Program sensitivity measures how robust a program is to small changes in its input, and is a fundamental notion in domains ranging from differential privacy to cyber-physical systems. A natural way to formalize program sensitivity is in terms of metrics on the input and output spaces, requiring that an r-sensitive function map inputs that are at distance d to outputs that are at distance at most r · d. Program sensitivity is thus an analogue of Lipschitz continuity for programs. Reed and Pierce introduced Fuzz, a functional language with a linear type system that can express program sensitivity. They show soundness operationally, in the form of a metric preservation property. Inspired by their work, we study program sensitivity and metric preservation from a denotational point of view. In particular, we introduce metric CPOs, a novel semantic structure for reasoning about computation on metric spaces, by endowing CPOs with a compatible notion of distance. This structure is useful for reasoning about metric properties of programs, and specifically about program sensitivity. We demonstrate metric CPOs by giving a model for the deterministic fragment of Fuzz.