{"title":"关于一般Octic泛函方程的几个注意事项","authors":"Yang-Hi Lee, Jaiok Roh","doi":"10.1155/2023/2930056","DOIUrl":null,"url":null,"abstract":"<jats:p>In this article, we study the stability of various forms for the general octic functional equation <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msubsup>\n <mrow>\n <mstyle displaystyle=\"true\">\n <mo stretchy=\"false\">∑</mo>\n </mstyle>\n </mrow>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>09</mn>\n </mrow>\n <mrow>\n <mn>9</mn>\n </mrow>\n </msubsup>\n <mrow>\n <msub>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mn>9</mn>\n <mo>−</mo>\n <mi>i</mi>\n </mrow>\n </msup>\n <mi>f</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n <mo>+</mo>\n <mi>i</mi>\n <mi>y</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n <mtext>.</mtext>\n </math>\n </jats:inline-formula> We first find a special way of representing a given mapping as the sum of eight mappings. And by using the above representation, we will investigate the hyperstability of the general octic functional equation. Furthermore, we will discuss the Hyers–Ulam–Rassias stability of the general octic functional equation.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"5 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Remarks Concerning the General Octic Functional Equation\",\"authors\":\"Yang-Hi Lee, Jaiok Roh\",\"doi\":\"10.1155/2023/2930056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this article, we study the stability of various forms for the general octic functional equation <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msubsup>\\n <mrow>\\n <mstyle displaystyle=\\\"true\\\">\\n <mo stretchy=\\\"false\\\">∑</mo>\\n </mstyle>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>09</mn>\\n </mrow>\\n <mrow>\\n <mn>9</mn>\\n </mrow>\\n </msubsup>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n <msup>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mrow>\\n <mn>9</mn>\\n <mo>−</mo>\\n <mi>i</mi>\\n </mrow>\\n </msup>\\n <mi>f</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n <mo>+</mo>\\n <mi>i</mi>\\n <mi>y</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mtext>.</mtext>\\n </math>\\n </jats:inline-formula> We first find a special way of representing a given mapping as the sum of eight mappings. And by using the above representation, we will investigate the hyperstability of the general octic functional equation. Furthermore, we will discuss the Hyers–Ulam–Rassias stability of the general octic functional equation.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2930056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2930056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
在本文中,本文研究了广义octic泛函方程∑I = 09 - 9的各种形式的稳定性C i−1 9−1 f x +I y = 0。我们首先找到一种将给定映射表示为八个映射的和的特殊方法。利用上述表述,我们将研究一般octic泛函方程的超稳定性。此外,我们将讨论一般octic泛函方程的Hyers-Ulam-Rassias稳定性。
Some Remarks Concerning the General Octic Functional Equation
In this article, we study the stability of various forms for the general octic functional equation We first find a special way of representing a given mapping as the sum of eight mappings. And by using the above representation, we will investigate the hyperstability of the general octic functional equation. Furthermore, we will discuss the Hyers–Ulam–Rassias stability of the general octic functional equation.