关于一般Octic泛函方程的几个注意事项

IF 0.7 Q2 MATHEMATICS
Yang-Hi Lee, Jaiok Roh
{"title":"关于一般Octic泛函方程的几个注意事项","authors":"Yang-Hi Lee, Jaiok Roh","doi":"10.1155/2023/2930056","DOIUrl":null,"url":null,"abstract":"<jats:p>In this article, we study the stability of various forms for the general octic functional equation <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msubsup>\n <mrow>\n <mstyle displaystyle=\"true\">\n <mo stretchy=\"false\">∑</mo>\n </mstyle>\n </mrow>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>09</mn>\n </mrow>\n <mrow>\n <mn>9</mn>\n </mrow>\n </msubsup>\n <mrow>\n <msub>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mn>9</mn>\n <mo>−</mo>\n <mi>i</mi>\n </mrow>\n </msup>\n <mi>f</mi>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n <mo>+</mo>\n <mi>i</mi>\n <mi>y</mi>\n </mrow>\n </mfenced>\n </mrow>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n <mtext>.</mtext>\n </math>\n </jats:inline-formula> We first find a special way of representing a given mapping as the sum of eight mappings. And by using the above representation, we will investigate the hyperstability of the general octic functional equation. Furthermore, we will discuss the Hyers–Ulam–Rassias stability of the general octic functional equation.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"5 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Remarks Concerning the General Octic Functional Equation\",\"authors\":\"Yang-Hi Lee, Jaiok Roh\",\"doi\":\"10.1155/2023/2930056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this article, we study the stability of various forms for the general octic functional equation <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msubsup>\\n <mrow>\\n <mstyle displaystyle=\\\"true\\\">\\n <mo stretchy=\\\"false\\\">∑</mo>\\n </mstyle>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n <mo>=</mo>\\n <mn>09</mn>\\n </mrow>\\n <mrow>\\n <mn>9</mn>\\n </mrow>\\n </msubsup>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n <msup>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mrow>\\n <mn>9</mn>\\n <mo>−</mo>\\n <mi>i</mi>\\n </mrow>\\n </msup>\\n <mi>f</mi>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>x</mi>\\n <mo>+</mo>\\n <mi>i</mi>\\n <mi>y</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n </mrow>\\n <mo>=</mo>\\n <mn>0</mn>\\n <mtext>.</mtext>\\n </math>\\n </jats:inline-formula> We first find a special way of representing a given mapping as the sum of eight mappings. And by using the above representation, we will investigate the hyperstability of the general octic functional equation. Furthermore, we will discuss the Hyers–Ulam–Rassias stability of the general octic functional equation.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2930056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2930056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,本文研究了广义octic泛函方程∑I = 09 - 9的各种形式的稳定性C i−1 9−1 f x +I y = 0。我们首先找到一种将给定映射表示为八个映射的和的特殊方法。利用上述表述,我们将研究一般octic泛函方程的超稳定性。此外,我们将讨论一般octic泛函方程的Hyers-Ulam-Rassias稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Remarks Concerning the General Octic Functional Equation
In this article, we study the stability of various forms for the general octic functional equation i = 09 9 C i 1 9 i f x + i y = 0 . We first find a special way of representing a given mapping as the sum of eight mappings. And by using the above representation, we will investigate the hyperstability of the general octic functional equation. Furthermore, we will discuss the Hyers–Ulam–Rassias stability of the general octic functional equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信