由实根多项式构成的圆角格

C. Alves, W.L.S. Pinto, A. A. Andrade
{"title":"由实根多项式构成的圆角格","authors":"C. Alves, W.L.S. Pinto, A. A. Andrade","doi":"10.12732/ijam.v33i4.10","DOIUrl":null,"url":null,"abstract":"Well-rounded lattices have been a topic of recent studies with applications in wiretap channels and in cryptography. A lattice of full rank in Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. In this paper, we investigate the well-roundedness of lattices coming from polynomials with integer coefficients and real roots. AMS Subject Classification: 11H31, 11H06, 11H71","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"29 1","pages":"663"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"WELL-ROUNDED LATTICES VIA POLYNOMIALS WITH REAL ROOTS\",\"authors\":\"C. Alves, W.L.S. Pinto, A. A. Andrade\",\"doi\":\"10.12732/ijam.v33i4.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Well-rounded lattices have been a topic of recent studies with applications in wiretap channels and in cryptography. A lattice of full rank in Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. In this paper, we investigate the well-roundedness of lattices coming from polynomials with integer coefficients and real roots. AMS Subject Classification: 11H31, 11H06, 11H71\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"29 1\",\"pages\":\"663\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/ijam.v33i4.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/ijam.v33i4.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

圆角格已成为近年来在窃听信道和密码学中应用的研究课题。欧几里得空间中的满秩格,如果它的最小向量的集合能张成整个空间,则称其为圆整格。本文研究了整数系数实根多项式的格的圆整性。AMS学科分类:11H31, 11H06, 11H71
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WELL-ROUNDED LATTICES VIA POLYNOMIALS WITH REAL ROOTS
Well-rounded lattices have been a topic of recent studies with applications in wiretap channels and in cryptography. A lattice of full rank in Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. In this paper, we investigate the well-roundedness of lattices coming from polynomials with integer coefficients and real roots. AMS Subject Classification: 11H31, 11H06, 11H71
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信