有向图上的分布式经验风险最小化

Ran Xin, Anit Kumar Sahu, S. Kar, U. Khan
{"title":"有向图上的分布式经验风险最小化","authors":"Ran Xin, Anit Kumar Sahu, S. Kar, U. Khan","doi":"10.1109/IEEECONF44664.2019.9049065","DOIUrl":null,"url":null,"abstract":"In this paper, we present stochastic optimization for empirical risk minimization over directed graphs. Using a novel information fusion approach that utilizes both row- and column-stochastic weights simultaneously, we propose $\\mathcal{S}\\mathcal{A}\\mathcal{B}$, a decentralized stochastic gradient method with gradient tracking, and show that the proposed algorithm converges linearly to an error ball around the optimal solution with a constant step-size. We provide a sketch of the convergence analysis as well as the generalization of the proposed algorithm. Finally, we illustrate the theoretical results with the help of experiments with real data.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"28 1","pages":"189-193"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distributed empirical risk minimization over directed graphs\",\"authors\":\"Ran Xin, Anit Kumar Sahu, S. Kar, U. Khan\",\"doi\":\"10.1109/IEEECONF44664.2019.9049065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present stochastic optimization for empirical risk minimization over directed graphs. Using a novel information fusion approach that utilizes both row- and column-stochastic weights simultaneously, we propose $\\\\mathcal{S}\\\\mathcal{A}\\\\mathcal{B}$, a decentralized stochastic gradient method with gradient tracking, and show that the proposed algorithm converges linearly to an error ball around the optimal solution with a constant step-size. We provide a sketch of the convergence analysis as well as the generalization of the proposed algorithm. Finally, we illustrate the theoretical results with the help of experiments with real data.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"28 1\",\"pages\":\"189-193\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9049065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9049065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了有向图上经验风险最小化的随机优化问题。利用一种同时利用行随机权值和列随机权值的新颖信息融合方法,我们提出了一种具有梯度跟踪的分散随机梯度方法$\mathcal{S}\mathcal{a}\mathcal{B}$,并证明了所提出的算法在最优解周围线性收敛到误差球,且步长不变。我们提供了收敛分析的概要以及所提出算法的推广。最后,通过实际数据的实验对理论结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed empirical risk minimization over directed graphs
In this paper, we present stochastic optimization for empirical risk minimization over directed graphs. Using a novel information fusion approach that utilizes both row- and column-stochastic weights simultaneously, we propose $\mathcal{S}\mathcal{A}\mathcal{B}$, a decentralized stochastic gradient method with gradient tracking, and show that the proposed algorithm converges linearly to an error ball around the optimal solution with a constant step-size. We provide a sketch of the convergence analysis as well as the generalization of the proposed algorithm. Finally, we illustrate the theoretical results with the help of experiments with real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信