{"title":"Myrioneuron 生物碱的合成研究。","authors":"Jake M Aquilina, Myles W Smith","doi":"10.1055/a-2085-5934","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Myrioneuron</i> alkaloids are a relatively small family of plant-derived alkaloids that present an intriguing array of structural intricacy and biological properties. As such, these natural products have drawn interest from the synthetic community, resulting in creative total syntheses of several family members. This review showcases recent synthetic efforts towards these polycyclic alkaloids.</p>","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286233/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthetic Studies toward the <i>Myrioneuron</i> Alkaloids.\",\"authors\":\"Jake M Aquilina, Myles W Smith\",\"doi\":\"10.1055/a-2085-5934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>Myrioneuron</i> alkaloids are a relatively small family of plant-derived alkaloids that present an intriguing array of structural intricacy and biological properties. As such, these natural products have drawn interest from the synthetic community, resulting in creative total syntheses of several family members. This review showcases recent synthetic efforts towards these polycyclic alkaloids.</p>\",\"PeriodicalId\":49451,\"journal\":{\"name\":\"Synthesis-Stuttgart\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286233/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthesis-Stuttgart\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2085-5934\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis-Stuttgart","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1055/a-2085-5934","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Synthetic Studies toward the Myrioneuron Alkaloids.
The Myrioneuron alkaloids are a relatively small family of plant-derived alkaloids that present an intriguing array of structural intricacy and biological properties. As such, these natural products have drawn interest from the synthetic community, resulting in creative total syntheses of several family members. This review showcases recent synthetic efforts towards these polycyclic alkaloids.
期刊介绍:
SYNTHESIS is an international full-paper journal devoted to the advancement of the science of chemical synthesis. It covers all fields of organic chemistry involving synthesis, including catalysis, organometallic, medicinal, biological, and photochemistry, but also related disciplines. SYNTHESIS provides dependable research results with detailed and reliable experimental procedures and full characterization of all important new products as well as scientific primary data.