聚乙二醇基复合相变材料研究进展

IF 11.1 2区 化学 Q1 POLYMER SCIENCE
Andrew Kim, Nicole Alexandra Wert, E. B. Gowd, R. Patel
{"title":"聚乙二醇基复合相变材料研究进展","authors":"Andrew Kim, Nicole Alexandra Wert, E. B. Gowd, R. Patel","doi":"10.1080/15583724.2023.2220041","DOIUrl":null,"url":null,"abstract":"Abstract This review discusses advances in polyethylene glycol-based composite phase change materials (PCMs) for thermal energy storage (TES) and thermal regulation. PCMs utilize latent heat storage, absorbing and releasing energy during phase transitions within specific temperature ranges. Polyethylene glycol (PEG) is a promising organic PCM due to its easily tunable phase change temperatures, high melting/freezing enthalpies, and nontoxicity, among other advantages. However, PEG suffers from low thermal conductivity and requires encapsulation to contain the flow of liquified PEG. To address these issues, PEG has been composited with thermally conductive fillers and porous materials. Moreover, PEG has been modified to have enhanced photothermal conversion efficiency, decreased supercooling, and flame resistance. This review discusses exemplary developments in PEG-based composite PCMs, focusing on blending with different polymers, doping with various carbon materials (porous carbons, graphene, and carbon nanotubes), embedding into silica-based skeletons, and synergizing with other promising hosts and additives like layered doubled hydroxides, MXenes, and metal-organic frameworks. This work highlights key studies focused on implementing PEG-based PCMs in building, pavement, electronic, textile, solar, and waste heat recovery applications. The consequences of different synthesis parameters and their effects on the composite PCM’s thermal transition properties are emphasized among the other results. Graphical Abstract","PeriodicalId":20326,"journal":{"name":"Polymer Reviews","volume":"9 1","pages":"1078 - 1129"},"PeriodicalIF":11.1000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recent Progress in PEG-Based Composite Phase Change Materials\",\"authors\":\"Andrew Kim, Nicole Alexandra Wert, E. B. Gowd, R. Patel\",\"doi\":\"10.1080/15583724.2023.2220041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This review discusses advances in polyethylene glycol-based composite phase change materials (PCMs) for thermal energy storage (TES) and thermal regulation. PCMs utilize latent heat storage, absorbing and releasing energy during phase transitions within specific temperature ranges. Polyethylene glycol (PEG) is a promising organic PCM due to its easily tunable phase change temperatures, high melting/freezing enthalpies, and nontoxicity, among other advantages. However, PEG suffers from low thermal conductivity and requires encapsulation to contain the flow of liquified PEG. To address these issues, PEG has been composited with thermally conductive fillers and porous materials. Moreover, PEG has been modified to have enhanced photothermal conversion efficiency, decreased supercooling, and flame resistance. This review discusses exemplary developments in PEG-based composite PCMs, focusing on blending with different polymers, doping with various carbon materials (porous carbons, graphene, and carbon nanotubes), embedding into silica-based skeletons, and synergizing with other promising hosts and additives like layered doubled hydroxides, MXenes, and metal-organic frameworks. This work highlights key studies focused on implementing PEG-based PCMs in building, pavement, electronic, textile, solar, and waste heat recovery applications. The consequences of different synthesis parameters and their effects on the composite PCM’s thermal transition properties are emphasized among the other results. Graphical Abstract\",\"PeriodicalId\":20326,\"journal\":{\"name\":\"Polymer Reviews\",\"volume\":\"9 1\",\"pages\":\"1078 - 1129\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15583724.2023.2220041\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15583724.2023.2220041","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 6

摘要

摘要本文综述了聚乙二醇基复合相变材料(PCMs)在储热和热调节方面的研究进展。pcm利用潜热储存,在特定温度范围内的相变过程中吸收和释放能量。聚乙二醇(PEG)是一种很有前途的有机PCM,由于其易于调节的相变温度,高熔化/冷冻焓,以及无毒等优点。然而,聚乙二醇的导热性低,需要封装来控制液态聚乙二醇的流动。为了解决这些问题,聚乙二醇已与导热填料和多孔材料复合。此外,PEG已被改性,以提高光热转换效率,减少过冷性和阻燃性。本文讨论了聚乙二醇基复合pcm的典型进展,重点是与不同聚合物共混,掺杂各种碳材料(多孔碳、石墨烯和碳纳米管),嵌入硅基骨架,以及与其他有前途的宿主和添加剂(如层状双氢氧化物、MXenes和金属有机框架)协同作用。这项工作强调了在建筑、路面、电子、纺织、太阳能和废热回收应用中实施基于peg的pcm的关键研究。在其他结果中,重点讨论了不同的合成参数及其对复合PCM热转变性能的影响。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Progress in PEG-Based Composite Phase Change Materials
Abstract This review discusses advances in polyethylene glycol-based composite phase change materials (PCMs) for thermal energy storage (TES) and thermal regulation. PCMs utilize latent heat storage, absorbing and releasing energy during phase transitions within specific temperature ranges. Polyethylene glycol (PEG) is a promising organic PCM due to its easily tunable phase change temperatures, high melting/freezing enthalpies, and nontoxicity, among other advantages. However, PEG suffers from low thermal conductivity and requires encapsulation to contain the flow of liquified PEG. To address these issues, PEG has been composited with thermally conductive fillers and porous materials. Moreover, PEG has been modified to have enhanced photothermal conversion efficiency, decreased supercooling, and flame resistance. This review discusses exemplary developments in PEG-based composite PCMs, focusing on blending with different polymers, doping with various carbon materials (porous carbons, graphene, and carbon nanotubes), embedding into silica-based skeletons, and synergizing with other promising hosts and additives like layered doubled hydroxides, MXenes, and metal-organic frameworks. This work highlights key studies focused on implementing PEG-based PCMs in building, pavement, electronic, textile, solar, and waste heat recovery applications. The consequences of different synthesis parameters and their effects on the composite PCM’s thermal transition properties are emphasized among the other results. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Reviews
Polymer Reviews 工程技术-高分子科学
CiteScore
24.80
自引率
0.80%
发文量
21
审稿时长
6 months
期刊介绍: Polymer Reviews is a reputable publication that focuses on timely issues within the field of macromolecular science and engineering. The journal features high-quality reviews that have been specifically curated by experts in the field. Topics of particular importance include biomedical applications, organic electronics and photonics, nanostructures, micro- and nano-fabrication, biological molecules (such as DNA, proteins, and carbohydrates), polymers for renewable energy and environmental applications, and interdisciplinary intersections involving polymers. The articles in Polymer Reviews fall into two main categories. Some articles offer comprehensive and expansive overviews of a particular subject, while others zero in on the author's own research and situate it within the broader scientific landscape. In both types of articles, the aim is to provide readers with valuable insights and advancements in the field of macromolecular science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信