用于心脏病早期检测的远程健康患者监测系统

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Gokulnath Chandra Babu, Shantharajah S. Periyasamy
{"title":"用于心脏病早期检测的远程健康患者监测系统","authors":"Gokulnath Chandra Babu, Shantharajah S. Periyasamy","doi":"10.4018/IJGHPC.2021040107","DOIUrl":null,"url":null,"abstract":"This paper presents a heart disease prediction model. Among the recent technology, internet of things-enabled healthcare plays a vital role. The medical sensors used in healthcare provide a huge volume of medical data in a continuous manner. The speed of data generation in IoT healthcare is high so the volume of data is also high. In order to overcome this problem, the proposed model is a novel three-step process to store and analyze the large volumes of data. The first step focuses on a collection of data from sensor devices. In Step 2, HBase has been used to store the large volume of medical sensor data from a wearable device to the cloud. Step 3 uses Mahout for devolving logistic regression-based prediction model. At last, ROC curve is used to find the parameters that cause heart disease.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"4 1","pages":"118-130"},"PeriodicalIF":0.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Remote Health Patient Monitoring System for Early Detection of Heart Disease\",\"authors\":\"Gokulnath Chandra Babu, Shantharajah S. Periyasamy\",\"doi\":\"10.4018/IJGHPC.2021040107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a heart disease prediction model. Among the recent technology, internet of things-enabled healthcare plays a vital role. The medical sensors used in healthcare provide a huge volume of medical data in a continuous manner. The speed of data generation in IoT healthcare is high so the volume of data is also high. In order to overcome this problem, the proposed model is a novel three-step process to store and analyze the large volumes of data. The first step focuses on a collection of data from sensor devices. In Step 2, HBase has been used to store the large volume of medical sensor data from a wearable device to the cloud. Step 3 uses Mahout for devolving logistic regression-based prediction model. At last, ROC curve is used to find the parameters that cause heart disease.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"4 1\",\"pages\":\"118-130\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJGHPC.2021040107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGHPC.2021040107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种心脏病预测模型。在最近的技术中,物联网医疗保健发挥着至关重要的作用。医疗保健中使用的医疗传感器以连续的方式提供大量的医疗数据。物联网医疗保健中的数据生成速度很高,因此数据量也很高。为了克服这一问题,提出了一种新的三步处理模型来存储和分析大量数据。第一步的重点是收集来自传感器设备的数据。在步骤2中,已经使用HBase将大量的医疗传感器数据从可穿戴设备存储到云端。步骤3使用Mahout对基于逻辑回归的预测模型进行下放。最后利用ROC曲线找出引起心脏疾病的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote Health Patient Monitoring System for Early Detection of Heart Disease
This paper presents a heart disease prediction model. Among the recent technology, internet of things-enabled healthcare plays a vital role. The medical sensors used in healthcare provide a huge volume of medical data in a continuous manner. The speed of data generation in IoT healthcare is high so the volume of data is also high. In order to overcome this problem, the proposed model is a novel three-step process to store and analyze the large volumes of data. The first step focuses on a collection of data from sensor devices. In Step 2, HBase has been used to store the large volume of medical sensor data from a wearable device to the cloud. Step 3 uses Mahout for devolving logistic regression-based prediction model. At last, ROC curve is used to find the parameters that cause heart disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信