A. Grakovski, Aleksandr Krivchenkov, Boriss Misnevs
{"title":"数字取证中网络攻击Ml/Dl分类的特征选择方法","authors":"A. Grakovski, Aleksandr Krivchenkov, Boriss Misnevs","doi":"10.2478/ttj-2022-0011","DOIUrl":null,"url":null,"abstract":"Abstract The research is related to machine learning and deep learning (ML/DL) methods for clustering and classification that are compatible with anomaly detection (network attacks detection) in digital forensics. Research is conducted in the field of selecting subsets of features of a dataset useful for constructing a good predictor (classifier). In this study, a new feature selection method for a classifier based on the Analytical Hierarchy Process (AHP) method is presented and tested. The proposed step-by-step algorithm for the iterative selection of these features makes it possible to obtain the minimum required list of features that are associated with attack events and can be used to detect them. For the classification, Artificial Neural Network (ANN) method is used. The accuracy of attack detection by the proposed method has been verified in numerical experiments.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Selection Method for Ml/Dl Classification of Network Attacks in Digital Forensics\",\"authors\":\"A. Grakovski, Aleksandr Krivchenkov, Boriss Misnevs\",\"doi\":\"10.2478/ttj-2022-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The research is related to machine learning and deep learning (ML/DL) methods for clustering and classification that are compatible with anomaly detection (network attacks detection) in digital forensics. Research is conducted in the field of selecting subsets of features of a dataset useful for constructing a good predictor (classifier). In this study, a new feature selection method for a classifier based on the Analytical Hierarchy Process (AHP) method is presented and tested. The proposed step-by-step algorithm for the iterative selection of these features makes it possible to obtain the minimum required list of features that are associated with attack events and can be used to detect them. For the classification, Artificial Neural Network (ANN) method is used. The accuracy of attack detection by the proposed method has been verified in numerical experiments.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ttj-2022-0011\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ttj-2022-0011","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Feature Selection Method for Ml/Dl Classification of Network Attacks in Digital Forensics
Abstract The research is related to machine learning and deep learning (ML/DL) methods for clustering and classification that are compatible with anomaly detection (network attacks detection) in digital forensics. Research is conducted in the field of selecting subsets of features of a dataset useful for constructing a good predictor (classifier). In this study, a new feature selection method for a classifier based on the Analytical Hierarchy Process (AHP) method is presented and tested. The proposed step-by-step algorithm for the iterative selection of these features makes it possible to obtain the minimum required list of features that are associated with attack events and can be used to detect them. For the classification, Artificial Neural Network (ANN) method is used. The accuracy of attack detection by the proposed method has been verified in numerical experiments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.